• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Department of Data Science
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Faculty of Sciences
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help
  1. Friedrich-Alexander-Universität
  2. Faculty of Sciences

Department of Data Science

Navigation Navigation close
  • Department
    • Department of Data Science
      • Executive Board
      • Administrative Office
    Portal Department of Data Science
  • People
  • Education
    • Bachelor Data Science (German)
    • Master Data Science (English)
    Portal Education
  • Research
    • Research Groups
      • Analytics & Mixed-Integer Optimization
      • Data Analytics
      • Digital Sovereignty
      • Mathematical Statistics and Data Science
      • Optimization under Uncertainty & Data Analysis
    • Agile Teams
      • IBO – Intelligent Business Optimization
    • Professors, Lecturers and Researchers
    • Calendar
    • Secondary Members of DDS
    • Former Members
    Portal Research

Department of Data Science

In page navigation: Research
  • Agile Teams
    • IBO – Intelligent Business Optimization
  • Research Groups
    • Analytics & Mixed-Integer Optimization
      • Group members
        • Dr. Andreas Bärmann
          • Projects
          • Publications
          • Teaching
        • M.Sc. Kristin Braun
          • Publications
        • M.Sc. Adrian Göß
        • M.Sc. Lukas Hager
        • M.Sc. Johannes Hahn
        • M.Sc. Katrin Halbig
        • M.Sc. Jan Krause
        • M.Sc. Richard Krug
          • Projects
        • Dipl.-Math. Galina Orlinskaya
          • Projects
          • Publications
        • Dr. Jan Rolfes, Akad. Rat
          • Publications
          • Teaching
        • Hanno Schülldorf
        • M.Sc. Sonja Weiland
        • Dr. Dieter Weninger, Akad. Rat
          • Projects
          • Publications
          • Teaching
      • Projects
        • Analytics
          • Ada-Lovelace Center
        • Energy
        • Engineering and Physics
        • Logistics and Production
        • Mixed Integer Programming
        • TRR 154 (Transregio)
      • Publications
      • PhD Theses
      • Teaching
      • Bachelor and Master Thesis
        • Bachelor Thesis
        • Master Thesis
      • Public Relations
      • News and Events
        • Conference on Optimization and Machine Learning in Industry
      • How to find us
    • Data Analytics
      • Prof. Dr. Timm Oertel
    • Digital Sovereignty
    • Mathematical Statistics and Data Science
    • Optimization under Uncertainty & Data Analysis
      • Group members
        • M.Sc. Kevin-Martin Aigner
          • Projects
          • Publications
          • Research Activities
        • M.Sc. Daniela Bernhard
        • M.Sc. Jana Dienstbier
          • Publications
        • M.Sc. Benno Hoch
          • Projects
        • M.Sc. Martina Kuchlbauer
          • Projects
          • Publications
        • Prof. Dr. Frauke Liers
        • M.Sc. Florian Rösel
          • Projects
          • Publications
        • Sebastian Tschuppik
          • Projects
        • Friedrich Wagner
        • M.Sc. Jorge Weston
      • Projects
      • Publications
      • PhD Theses
      • Teaching
      • Bachelor and Master Theses
      • How to find us
  • Professors, Lecturers and Researchers
    • Marie-Christine Düker
    • Jens Habermann
    • Johannes Helbig
    • Manfred Kronz
    • Frauke Liers
    • Timm Oertel
    • Dieter Weninger
    • Marius Yamakou
  • Secondary Members of DDS
    • Freimut Bodendorf
    • Günter Leugering
  • Former Members

Marius Yamakou

Dr. Marius Yamakou

Marius Yamakou

Faculty of Sciences
Department of Data Science (DDS)

Room: Room 02.343
Cauerstr. 11
91058 Erlangen
  • Phone number: +49 9131 85-67095
  • Fax number: +49 9131 85-67100
  • Email: marius.yamakou@fau.de
  • Website: https://www.datascience.nat.fau.eu/research/researchers/marius-yamakou/

Office hours: Tuesdays, 11:00 am – 1:00 pm, Room: 02.343

Curriculum vitae

  • 04/2021 – present: Researcher and Lecturer, Department of Data Science, University of Erlangen-Nürnberg, Germany
  • 11/2019 – 03/2021: Postdoc, Department of Mathematics, University of Erlangen-Nürnberg, Germany
  • 02/2018 – 10/2019: Postdoc, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

Research visits

  • 28/05/2023 – 03/06/2023: Researcher, Centre for Mathematical Sciences, Lund University, Sweden
  • 12/02/2023 – 23/02/2023: Researcher, Perimeter Institute for Theoretical Physics, Waterloo, Canada
  • 05/12/2022 – 18/12/2022: Researcher, Department of Mathematics, Brandeis University, Massachusetts, USA
  • 01/10/2022 – 30/10/2022: Researcher, Inria Sophia Antipolis Méditerranée Research Centre, Valbonne, France
  • 01/02/2019 – 30/04/2019: Researcher, Department of Applied Mathematics, Technical University of Denmark, Denmark

Education

  • 10/2014 – 02/2018: Ph.D. in Applied Mathematics, Max Planck Institute for Mathematics in the Sciences, Leipzig
  • 10/2013 – 09/2014: Studies in Mathematics, University of Leipzig
  • 10/2011 – 05/2013: M.Sc. in Theoretical Physics, University of Buea

Grants and funding

  • 10/2014 – 02/2018:   IMPRS Scholarship, Max Planck Institute for Mathematics in the Sciences, Leipzig
  • 04/2021 – 03/2023: Principal Investigator, DFG Research Grant (Project No. 456989199), Approx. € 200K

Teaching and tutorials

  • 04/2020 – present: Departments of Mathematics and Data Science, University of Erlangen-Nürnberg
    • Lecture and exercise classes: Dynamical System Theory for Data Scientists, WS 23/24
    • Lecture and exercise classes: Theory of Neural Dynamics and Applications to Machine Learning, SS 23
    • Exercise classes: Mathematics for Engineers: Stochastics, SS 20
  • 02/2019 – 04/2019: Department of Applied Mathematics, Technical University of Denmark
    • Lecture and exercise classes: Dynamical Systems 2 (M.Sc. course)
  • 10/2016 – 10/2017: Max Planck Institute for Mathematics in the Sciences, Leipzig
    • Seminar series: 5 Lectures on Stochastic Neuronal Dynamics
  • 10/2012 – 06/2013: Department of Physics, University of Buea
    • Exercise classes: PHY 202 Classical Mechanics 1 (B.Sc. course)
    • Exercise classes: PHY 301 Classical Mechanics 2 (B.Sc. course)
    • Exercise classes: PHY 207 Mathematical Methods for Physics 1 (B.Sc. course)
    • Exercise classes: PHY 306 Mathematical Methods for Physics 2 (B.Sc. course)

Students and thesis supervision

I am pleased to discuss possible bachelor’s and master’s thesis topics at the intersection of dynamical systems theory, machine learning, and data science.

Master thesis

  • 10/2023 – present: Jan Kobiolka, Reduced-order adaptive synchronization in a chaotic neural network: A dynamical vs machine learning approach
  • 04/2020 – 04/2021: Florian Bönsel, Control of noise-induced coherent oscillations in three-neuron motifs
  • 03/2016 – 02/2017: Gregor Schuldt, Simulation des Morris-Lecar-Neuronenmodells mit stochastischen Störungen

Bachelor thesis

Talks at conferences, workshops, and seminars

  • 11/2023: Workshop: Dynamics in Coupled Network Systems, Weierstrass Institute for Applied Analysis & Stochastics, Berlin
  • 10/2023: Computational Neuroscience Seminar: University College London (UCL), London, United Kingdom
  • 07/2023: 32nd Annual Meeting, Organization for Computational Neurosciences, Leipzig, Germany
  • 06/2023: Dynamical Systems Seminar, Centre for Mathematical Sciences, Lund University, Sweden
  • 05/2023: Seminar of Statistical Learning and Dynamical Systems, ScaDS.AI Institute, Uni. of Leipzig, Germany
  • 05/2023: SIAM Conference on Applications of Dynamical Systems, Portland, Oregon, USA
  • 03/2023: Dynamical Systems Seminar, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
  • 02/2023: Dynamical systems seminar, Department of Applied Mathematics, University of Waterloo, Canada
  • 02/2023: 14th Conference on Dynamical Systems Applied to Biology and Natural Sciences, Bilbao, Spain
  • 12/2023: Dynamical Systems in Neuroscience seminar, Brandeis University, Waltham, Massachusetts, USA
  • 11/2022: International Conference  Control of Self-Organizing Nonlinear Systems, Potsdam, Germany
  • 10/2022: Conference on Complex Systems, Palma de Mallorca, Spain
  • 09/2022: Workshop on Control of Self-Organizing Nonlinear Systems, Wittenberg, Germany
  • 06/2022: 7th International Conference on Random Dynamical Systems (online), Hanoi, Vietnam
  • 05/2022: Nonlinear Dynamics Seminar,  Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
  • 09/2021: International Conference on Stochastic Resonance, Perugia, Italy
  • 05/2021: SIAM Conference on Applications of Dynamical Systems (online), Portland, USA
  • 11/2020: Mini-workshop on Neuronal Dynamics, University of Erlangen-Nürnberg, Germany
  • 08/2020: XL. Dynamics Days Europe (online), Nice, France
  • 02/2020: Oberseminar: Dynamics, Department of Mathematics, Technical University of Munich, Germany
  • 09/2019: 15th Seminar on Stochastic and Collective Effects in Neural Systems, University of Granada, Spain
  • 07/2019: Int. Workshop on Oscillations, Transients, and Fluctuations in Complex Networks, University of Copenhagen
  • 09/2018: Bernstein Conference on Computational Neuroscience, Technical University of Berlin, Germany
  • 07/2018: 27th Annual Meeting, Organization for Computational Neurosciences, Seattle, USA
  • 05/2018: Seminar: Dynamics and Control of Complex Networks, Inst. of Theoretical Physics, Technical University of Berlin
  • 06/2018: 4th International Conference on Mathematical Neuroscience, Juan-les-Pins, France
  • 03/2018: Deutsche Physikalische Gesellschaft (DPG) Spring Meeting, Berlin, Germany
  • 09/2017: Bernstein Conference on Computational Neuroscience, University of Göttingen, Germany
  • 05/2017: SIAM Conference on Applications of Dynamical Systems, Snowbird, Utah, USA
  • 11/2016: 3rd Dresden-Leipzig Dynamics Day, Technical University of Dresden, Dresden, Germany
  • 06/2015: Int. Workshop: Dynamics of Multi-Level Systems, Max Planck Institute for Physics of Complex Systems, Dresden

Research interests and methods

My research interest is interdisciplinary and centered at the intersection of applied mathematics, theoretical physics, complex systems, computational neuroscience, and machine learning. My approach involves leveraging insights from these fields to unravel the fundamental principles underlying the computational power of biological neurons and the brain. I aim to use these principles to optimize bio-inspired machine learning algorithms and computing.

  • Dynamical system theory and nonlinear dynamics
  • Statistical physics and stochastic dynamics
  • Geometric singular perturbation theory
  • Complex systems theory
  • Adaptive network dynamics
  • Chaos- and noise-induced resonance and synchronization phenomena
  • Self-organization and critical dynamics in complex adaptive systems
  • Theory of neuronal dynamics and computational neuroscience
  • Computation through neural population dynamics
  • Spiking neural networks and their applications
  • Bio-inspired machine learning: liquid-state machines and echo-state networks
  • Numerical simulations and data analysis
  • In particular, the interfaces between the above fields!

Publications (peer-reviewed) and preprints

  • Synchronization in STDP-driven memristive neural networks with time-varying topology.
    Marius E. Yamakou, Serafim Rodrigues, Mathieu Desroches
       Journal of Biological Physics, Accepted, xxx-xxx (2023)
  • Self-induced-stochastic-resonance breathing chimera.
    Jinjie Zhu, Marius E. Yamakou
       Physical Review E 108, L022204 (2023)
  • Combined effect of STDP and homeostatic structural plasticity on coherence resonance.
    Marius E. Yamakou, Christian Kuehn
      Physical Review E 107, 044302 (2023)
  • Coherence resonance and  synchronization in a small-world neural network: An interplay in the presence of STDP.
    Marius E. Yamakou, Estelle M. Inack
      Nonlinear Dynamics  111, 7789-7805 (2023)
  • Diversity-induced decoherence.
    Marius E. Yamakou, Els Heinsalu, Marco Patriarca, Stefano Scialla
    Physical Review E 106, L032401 (2022)
  • Optimal resonances in multiplex neural networks driven by an STDP learning rule.
    Marius E. Yamakou, Tat D. Tran, Jürgen Jost
    Frontiers in Physics 10, 909365 (2022)
  • Lévy noise-induced self-induced stochastic resonance in a memristive neuron.
    Marius E. Yamakou, Tat D. Tran
      Nonlinear Dynamics 107, 2847-2865 (2021)
  • Control of noise-induced coherent oscillations in three-neuron motifs.
    Florian Bönsel, Claus Metzner, Patrick Krauss, Marius E. Yamakou
      Cognitive Neurodynamics 16, 2847-2865 (2021)
  • Chaotic synchronization of memristive neurons: Lyapunov function versus Hamilton function.
    Marius E. Yamakou
    Nonlinear Dynamics 101, 487-500 (2020)
  • Optimal self-induced stochastic resonance in multiplex neural networks: electrical versus chemical synapses.
    Marius E. Yamakou, Poul G. Hjorth, Erik A. Martens
    Frontiers in Computational Neuroscience 14, 62 (2020)
  • The stochastic FitzHugh-Nagumo neuron model in the excitable regime embeds a leaky integrate-and-fire model.
    Marius E. Yamakou, Tat D. Tran, Luu H. Duc, Jürgen Jost
    Journal of Mathematical Biology 79, 509-532 (2019)
  • Control of coherence resonance by self-induced stochastic resonance in a multiplex neural network.
    Marius E. Yamakou, Jürgen Jost
    Physical Review E 100, 022313 (2019)
  • Weak-noise-induced transitions with inhibition and modulation of neural oscillations.
    Marius E. Yamakou, Jürgen Jost
    Biological Cybernetics 112, 445-463 (2018)
  • Coherent neural oscillations induced by weak synaptic noise.
    Marius E. Yamakou, Jürgen Jost
    Nonlinear Dynamics 93, 2121-2144 (2018)
  • A simple parameter can switch between different weak-noise-induced phenomena in a simple neuron model.
    Marius E. Yamakou, Jürgen Jost
    EPL (Europhysics Letters) 120, 18002 (2017)
  • Ratcheting and energetic aspects of synchronization in coupled bursting neurons.
    Marius E. Yamakou, E. Maeva Inack, F. M. Kakmeni Moukam
    Nonlinear Dynamics 83, 541-554 (2015)
  • Localized nonlinear excitations in diffusive Hindmarsh-Rose neural network.
    F. M. Kakmeni Moukam, E. Maeva Inack, Marius E. Yamakou
    Physical Review E 89, 052919 (2014)
  • Dynamics of neural fields with exponential temporal kernel.
    Elham Shamsara, Marius E. Yamakou, Fatihcan M. Atay, Jürgen Jost
    arXiv Under revision (2023)
  • Quantifying and maximizing the information flux in recurrent neural networks.
    Claus Metzner, Marius E. Yamakou, Dennis Voelkl, Achim Schilling, Patrick Krauss
    arXiv Submitted (2023)

 

Department of Data Science
Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstr. 11
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Internal
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up