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Abstract

This thesis is focused on variational methods for fully-automatic processing and analysis

of medical ultrasound images. In particular, the e↵ect of appropriate data modeling in

the presence of non-Gaussian noise is investigated for typical computer vision tasks.

Novel methods for segmentation and motion estimation of medical ultrasound images

are developed and evaluated qualitatively and quantitatively on both synthetic and real

patient data.

The first part of the thesis is dedicated to the problem of low-level segmentation. Two

di↵erent segmentation concepts are introduced. On the one hand, segmentation is formu-

lated as a statistically motivated inverse problem based on Bayesian modeling. Using

recent results from global convex relaxation, a variational region-based segmentation

framework is proposed. This framework generalizes popular approaches from the litera-

ture and o↵ers great flexibility for segmentation of medical images. On the other hand,

the concept of level set methods is elaborated to perform segmentation based on the

results of a discriminant analysis of medical ultrasound images. The proposed method

is compared to the popular Chan-Vese segmentation method.

In the second part of the thesis, the concept of shape modeling and shape analysis is

described to perform high-level segmentation of medical ultrasound images. Motivated

by structural artifacts in the data, e.g., shadowing e↵ects, the latter two segmentation

methods are extended by a shape prior based on Legendre moments. E�cient numerical

schemes for encoding and reconstruction of shapes are discussed and the proposed high-

level segmentation methods are compared to their respective low-level variants.

The last part of the thesis deals with the challenge of motion estimation in medical

ultrasound imaging. A broad overview on optical flow methods is given and typical

assumptions and models are discussed. The inapplicability of the popular intensity con-

stancy constraint is shown for the special case of images perturbed by multiplicative

noise both mathematically and experimentally. Based on the idea of modeling image in-

tensities as random variables, a novel data constraint based on local statistics is proposed

and their validity is proven. The incorporation of this constraint into a variational model

for optical flow estimation leads to a novel method which outperforms state-of-the-art

methods from the literature on medical ultrasound images.

This thesis aims to give a balanced view on the di↵erent stages involved in solving

computer vision tasks in medical imaging: Starting from modeling problems, to their

analysis and e�cient numerical realization, to their final application and adaption to

real world conditions.
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1
Introduction

With the help of new technological developments, medical ultrasound imaging evolved

rapidly in the past decades and became a ’condicio sine qua non’ for diagnostics in clin-

ical routine. Due to its low costs, the absence of radiation, and its real-time capacities,

it is employed in a wide range of applications today, e.g., in prenatal diagnosis and

echocardiography.

As medical ultrasound imaging gained importance for clinical healthcare, the interest

in processing and analysis of ultrasound images simultaneously rose within the com-

puter vision and mathematical image processing community. To tackle the challenging

problems in ultrasound images, e.g., a physical noise phenomena called multiplicative

speckle noise, novel methods have been proposed in the recent years which fundamen-

tally di↵er from standard image processing techniques. Since those methods were mainly

introduced in the context of ultrasound image denoising, the question arises whether the

success of the implementation of non-standard noise models translates to other problems

in ultrasound image analysis and if the improvements are significant enough to justify

the additional computational e↵ort. This thesis addresses the question if non-standard

noise models give any benefit for the main tasks of computer vision in medical ultra-

sound imaging, i.e., image segmentation and motion estimation, and we propose novel

methods in this context.

In the following sections we give an overview of the content of this work. We start in

Section 1.1 with a short motivation for the use of variational methods in medical image

analysis and in particular for medical ultrasound imaging. The main contributions of

this thesis are listed in Section 1.2. Finally, the organization of this work is outlined in

Section 1.3.
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1.1 Motivation

Calculus of variations has a long history within the field of mathematical analysis and a

first sophisticated theory was introduced by Leonhard Euler at the beginning of the 18th

century in order to systematically elaborate the ’Brachistochrone curve’ problem initially

formulated by the Bernoulli brothers. In the last three centuries important contributions

have been made by many mathematicians, e.g., Weierstrass, Lebesgue, Carathéodory,

Legendre, Hamilton, Dirichlet, Riemann, Gauss, Tonelli, and Hilbert just to mention a

few popular ones. Hence, the calculus of variations evolved to a powerful theory with

useful tools for optimization problems of functionals. Eventually, three of the famous

’Hilbert problems’ were dedicated to this field in 1900. In the past decades these methods

underwent a second peak of attention due to the development of a↵ordable computers,

which are able to solve real-life problems with the help of applied mathematics.

One particular application of the calculus of variations ismedical image analysis, which in

general deals with the (semi-)automatic processing, analysis, and interpretation of med-

ical image data from various image modalities, e.g., computed tomography or magnetic

resonance tomography. Typical problems include image denoising, image segmentation,

and quantification. Today, research in computer vision and mathematical image pro-

cessing assists physicians in classification and interpretation of symptoms and enables

them to make time-e�cient and reproducible diagnoses in daily clinical routine and thus

maximize the potential number of treatable patients.

While there are many di↵erent approaches in the field of medical image analysis the

impact of variational methods is indisputable. Although these methods require a deep

understanding of the respective mathematical background, the established theory of

calculus of variations gives a solid foundation for a huge variety of problems in medical

image analysis and thus can be seen as universally applicable in this context.

To utilize variational methods in medical image analysis, one has to model the specific

task as an optimization problem of a functional. Typically, the goal is to find a solution

to problems of the form,

inf
u2X

⇢

E(u) =

Z

⌦

g(~x, u(~x),ru(~x)) d~x

�

. (1.1)

Depending on the choice of a suitable Banach space X and the integrand g in (1.1), the

solution u 2 X has to fulfill certain requirements if it exists. In order to model physical

e↵ects in the given image data and to incorporate a-priori knowledge about the expected

solution, a special class of variational methods has been introduced. This formulation

is statistically motivated and is based on Bayesian modeling of Gibbs a-priori densities.
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This leads to variational problems of the form,

inf
u2X

D(u) + ↵R(u) , ↵ > 0 . (1.2)

Using the terminology of inverse problems, the data fidelity term D measures the devi-

ation of the solution u 2 X to an assumed physical data model and the regularization

term R enforces certain characteristics of an expected solution.

Physical noise modeling for ultrasound imaging

Within this thesis we are especially interested in non-standard data models for computer

vision tasks in medical ultrasound imaging and hence in more appropriate data fidelity

terms in (1.2). For this reason, implicit and explicit physical noise modeling plays an

important role throughout this work.

The standard data model in computer vision for given image data f reads as,

f = u + ⌘ , (1.3)

where u denotes the unknown exact image and ⌘ represents a global perturbation of u

with normally distributed noise. With respect to the form in (1.3), this model is also

known as additive Gaussian noise and is signal-independent. Gaussian noise is the most

common noise model used in the literature, as it is suitable for a wide range of appli-

cations, e.g., digital photography or computed tomography. However, observations and

physical experiments indicate that the noise model in (1.3) is not an appropriate choice

for medical ultrasound images. In this context the term ’multiplicative speckle noise’

has gained attention throughout the ultrasound imaging community and first adaptions

of known methods from mathematical image denoising to this model led to significant

improvements in this field.

Inspired by these recent developments, we are interested in the translation of the findings

in image denoising to other important problems in computer vision and mathematical

image processing. By incorporation of appropriate physical noise models we especially

try to improve the performance of algorithms for image segmentation and motion esti-

mation on medical ultrasound images. In this context we investigate Loupas noise of

the form,

f = u + u
�

2 ⌘ , (1.4)

where u denotes the unknown exact image and ⌘ is a global perturbation of u with

normally distributed noise. The noise in (1.4) can be desribed as adaptive because the

bias caused by ⌘ is locally amplified or damped by the magnitude of the original image
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signal u. The impact of this multiplicative noise is determined by a physical parameter

� 2 �0, which depends on the imaging system and the respective application.

Furthermore, under certain conditions another multiplicative noise model has proven to

be feasible for medical ultrasound imaging. In case of Rayleigh distributed noise the

considered data model for f is of the form,

f = uµ , (1.5)

where u denotes the unknown exact image and µ represents Rayleigh distributed noise.

Both perturbations in (1.4) and (1.5) are categorized as multiplicative noise and they

are signal-dependent due to the relation to u. They di↵er fundamentally from the case

in (1.3) and it is challenging to design robust methods in presence of these non-Gaussian

noise models. Figure 1.1 illustrates the impact of these three noise models on a one-

dimensional signal.
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(b) Data f perturbed by add. Gaussian noise
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(c) Data f perturbed by Loupas noise
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(d) Data f perturbed by Rayleigh noise

Fig. 1.1. One-dimensional visualization of the perturbation of a signal by three

di↵erent noise models typically assumed in medical ultrasound imaging.
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(a) Erroneous low-level segmentation (b) Training shapes

Fig. 1.2. An unsatisfying segmentation result of an automatic low-level segmenta-

tion method due to missing anatomical structures in (a) motivates the incorporation

of high-level information induced by a set of training shapes in (b).

High-level information based on shape priors

Next to the perturbation of medical ultrasound images by physical noise discussed above,

one also has to deal with structural artifacts, e.g., shadowing e↵ects. Since whole image

regions can be a↵ected by this phenomenon, automatic segmentation methods are likely

to produce erroneous segmentation results on the respective data sets. Especially low-

level segmentation algorithms are notably prone to structural artifacts as they are based

on intrinsic image features only. Figure 1.2a shows an unsatisfying segmentation result

of such a method due to missing anatomical structures near the valvular region of the

left ventricle in a human myocardium.

For this reason, several contributions to the field of ultrasound image segmentation

proposed the incorporation of high-level information by means of a shape prior. The

main intention of using high-level information during the process of segmentation is

to stabilize a method in the presence of physical image noise and structural artifacts.

Figure 1.2b shows a small part of a training data set consisting of left ventricle shapes

delineated by medical experts, which is used for high-level segmentation of medical

ultrasound images.

However, to the best of our knowledge it has not been investigated in the literature so

far, if realistic data modeling, e.g., physical noise modeling, has any significant impact

on the segmentation results of such high-level approaches. Due to this, we evaluate in

the course of this thesis if it is profitable to perform physical noise modeling next to the

incorporation of a-priori knowledge about the shape to be segmented.
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Motion estimation in ultrasound imaging

Motion estimation plays a key role for the assessment of medical parameters in computer-

assisted diagnosis, e.g., in echocardiography. In the context of echocardiographic data it

is often referred to as speckle tracking echocardiography (STE) in clinical environments

and plays an important role in diagnosis and monitoring of cardiovascular diseases and

the identification of abnormal cardiac motion. Next to measurements of the atrial cham-

bers’ motion, many diagnosis protocols are specialized for STE of the left ventricle, e.g.,

for revealing myocardial infarctions and scarred tissue.

Typically, STE is done by manual contour delineation performed by a physician, fol-

lowed by automatic contour tracing over time. This semiautomatic o✏ine-procedure is

time consuming as it requires the physician to segment the endocardium manually. Fur-

thermore, it is clear that speckle tracking is di�cult in the presence of speckle noise and

in low contrast regions due to the loss of signal intensity. This makes speckle tracking a

very challenging task and motivates the goal of developing robust and fully automatic

motion estimation methods for medical ultrasound imaging.

Most proposed methods for motion estimation on medical ultrasound data are derived

from classical computer vision concepts and include registration and optical flow meth-

ods. One typical assumption in the context of optical flow methods is the intensity

constancy constraint (ICC), which is given in the case of two-dimensional data by,

I(x, y, t) = I(x+ u, y + v, t+ 1) . (1.6)

Obviously, this constraint is seldom fulfilled on real data, but using quadratic distance

measures in combination with additional smoothness constraints has proven to lead to

satisfying results of optical flow methods on most type of images in computer vision.

However, the situation is di↵erent for medical ultrasound images, due to the presence of

physical phenomena such as multiplicative speckle noise. In particular, we are able to

show mathematically that the ICC in (1.6) and its higher order variants are not valid

in the presence of Loupas noise and results of methods based on these constraints are

prone to get biased.

To overcome this problem, it is feasible to model the signal intensities of image pixels

as discrete random variables and use the local distribution of these random variables as

feature for motion estimation. It turns out that this feature leads to more robust and

accurate optical flow estimation results and the correctness of a newly derived constraint

based on local statistics can be shown both mathematically as well as experimentally.
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1.2 Contributions

In this thesis we address typical tasks of computer vision and mathematical image pro-

cessing for medical ultrasound imaging and utilize variational methods to model these

tasks appropriately. The main contribution in this work is the incorporation of a-priori

knowledge about the image formation process in ultrasound images and the development

of novel variational formulations which are based on non-standard data fidelity terms.

We elaborate di↵erent ways to increase the robustness of computer vision concepts in

the presence of perturbations in ultrasound imaging and investigate the impact of both

implicit and explicit physical noise modeling on the results of the proposed methods.

In general, we aim to present a balanced view on the process of observation-based mod-

eling, analysis of the proposed variational formulations, and their respective numerical

realization. Furthermore, this thesis gives a broad overview on related techniques and

introduces the related topics in a top-down manner. All proposed models are evaluated

on synthetic data and/or real patient data from daily clinical routine.

Low-level segmentation

We investigate two di↵erent concepts of low-level segmentation. We propose a region-

based variational segmentation framework which explicitly incorporates physical noise

models using the theory of Bayesian modeling. We perform segmentation using singular

energies and also methods recently proposed from the field of global convex relaxation.

The generality and modularity of this segmentation framework gives a huge amount of

flexibility to perform segmentation tasks in medical imaging and allows to model the

image intensities for each region separately. In particular, we realized:

• four di↵erent data fidelity terms corresponding to additive Gaussian noise, Loupas

noise, Rayleigh noise, and Poisson noise,

• four di↵erent regularization terms, i.e., piecewise-constant approximation,H1 semi-

norm, Fisher information, and total variation.

For a two-phase segmentation task, e.g., partitioning the image domain in background

region and object-of-interest, this leads to (4 ⇥ 4)2 = 256 possible segmentation se-

tups. Naturally, it is not possible to evaluate all options of this proposed segmentation

framework in the course of this thesis, due to the vast time e↵ort needed for param-

eter optimization. Hence, we concentrate on three noise models typically assumed for

medical ultrasound imaging and piecewise-constant approximations as used, e.g., in the

popular Chan-Vese segmentation method.
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In the context of low-level segmentation we analyze the just mentioned Chan-Vese

method and observe that its level set based realization leads to erroneous segmentation

results on medical ultrasound images. We elaborate di↵erent reasons for this observation

such as the existence of local minima and an inappropriate data fidelity term. To over-

come these drawbacks, we propose a novel segmentation formulation that partitions the

image domain by incorporating valuable information from the image histogram using

discriminant analysis. The superiority of the proposed method is demonstrated on real

patient data from echocardiographic examinations.

High-level segmentation

As indicated in Section 1.1, structural artifacts often lead to the necessity of incorpo-

rating high-level information into the process of segmentation. Within this thesis we

discuss di↵erent concepts of shape description and focus on moment-based represen-

tations of image regions. We discuss the advantages and disadvantages of geometric,

Legendre, and Zernike moments from an application view and give details on e�cient

implementations of these. In particular we give a formal proof for the correctness of

an iterative construction formula for Legendre coe�cients, which eases the challenge of

evaluating high-order Legendre polynomials. Based on Legendre moments we construct

a shape prior as realization of a Rosenblatt-Parzen estimator, known from statistics.

Although several works propose the use of shape priors to increase the robustness of

segmentation methods, it is unclear if the influence of these shape priors make physi-

cal noise modeling unnecessary for medical ultrasound data. Hence, we extend the two

proposed low-level segmentation concepts by the shape prior mentioned above and in-

vestigate the impact of physical noise modeling on robustness and accuracy of high-level

segmentation within this thesis. In this context we perform qualitative and quantitative

studies on real patient data from echocardiography.

Motion estimation

Finally, we address the problem of fully automatic motion estimation on medical ul-

trasound images and give a broad introduction to this topic. We focus on optical flow

methods and summarize the most common assumptions, constraints, data fidelity terms,

and regularization methods from this field. We are able to show mathematically and

experimentally that the most popular constraints, i.e., the ICC in (1.6) and its variants,

lead to erroneously corresponding pixels in presence of multiplicative noise and hence to

biased results of motion estimation.
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By observing the characteristics of speckle noise in medical ultrasound images, we pro-

pose a novel feature based on local statistics and deduce an alternative constraint to

overcome the limitations of the ICC. The so-called histogram constancy contraint is em-

bedded in a variational formulation and compared to the closely related Horn-Schunck

optical flow method. We show the validity of the histogram-based optical flow method

mathematically and give a formal proof for the existence of unique minimizers by using

the direct method of calculus of variations. The new model is evaluated on both syn-

thetic as well as real patient data and we show that it outperforms recent state-of-the-art

methods from the literature on medical ultrasound data.

1.3 Organization of this work

In Chapter 2 we provide the mathematical foundation for the modeling and analysis of

computer vision tasks in medical ultrasound imaging. In particular, we give the basic

tools needed to show the existence of minimizers of variational formulations based on

concepts from functional analysis, e.g., Sobolev spaces.

A short introduction to the application of medical ultrasound imaging in Chapter 3 mo-

tivates the development of non-standard methods for this imaging modality and outlines

the challenges induced by physical phenomena such as speckle noise and shadowing ef-

fects.

Chapter 4 is subdivided into two semantic parts both focused on low-level segmenta-

tion. In the first half we discuss classical segmentation formulations from the literature

and propose the region-based variational segmentation framework which allows to incor-

porate di↵erent noise models and regularization terms. In the second part we give a

introduction to the concept of level set segmentation and provide the foundation for the

numerical realization of a novel segmentation formulation based on discriminant analy-

sis.

We give an introduction to the concept of shape representation and its use for medical

ultrasound segmentation in Chapter 5. Both proposed low-level segmentation methods

from the last chapter are extended by a shape prior based on Legendre moments. We

investigate the impact of physical noise modeling on high-level segmentation and evalu-

ate the use of di↵erent data fidelity terms in this context.

Finally, we discuss the challenge of fully automatic motion estimation for medical ultra-

sound images in Chapter 6. We give a broad overview on optical flow methods and prove

the inapplicability of the fundamental assumption of intensity constancy for ultrasound

images. A new constraint based on local statistics is introduced and its superiority is

shown mathematically and experimentally.
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2
Mathematical foundations

In this chapter we aim to give a solid foundation for the mathematical arguments needed

to formulate variational problems in medical ultrasound imaging. We start from the very

basics of topology andmeasure theory in Section 2.1 to be able to introduce more abstract

concepts in the course of this chapter, e.g., Lebesgue spaces. As already indicated in

Section 1, we are interested in finding optimal solutions for minimization problems based

on functionals. Since a solution of such a problem is a function which is determined to

fulfill certain requirements depending on the application at focus, it is reasonable to give

the most important relations from the field of functional analysis in Section 2.2. Based

on the concepts of Sobolev spaces and weak converging sequences, we are able to provide

tools from the direct method of calculus of variations, which are needed for the analysis

of variational problems and the proof for existence of minimizers.

Since the mathematical relations in this chapter are well-known and not in the focus of

this thesis, we only give the needed information and refrain to describe these concepts in

more detail. Hence, the following descriptions have to be understood as reference text

for later chapters.

2.1 Topology and measure theory

We start with an introduction to general topological spaces in Section 2.1.1 and refine

basic concepts such as open sets, continuity, and converging sequences for metric spaces

and finally define vector spaces.

In Section 2.1.2 we start with the definition of measurable spaces and �-algebras and give

important examples, e.g., the Lebesgue �-algebra. Introducing measurable functions we

are able to reproduce the construction of the Lebesgue integral.



14 2 Mathematical foundations

2.1.1 Topology

The following definitions in the context of topological and metric spaces are based on

[69, §1-3] written by Forster and [5, §0] by Alt.

Definition 2.1.1 (Topological spaces and open sets). Let X be a basic set, I an arbitrary

index set and J a finite index set. A set T containing subsets of X is called topology,

if the following properties are fulfilled,

• the empty set {} and X itself are elements in T ,

• any union
S

i2I Xi of elements Xi 2 T is an element in T ,

• any finite section
T

j2J Xj of elements Xj 2 T is an element in T .

The subsets of X which are in the topology T are called open sets and the basic set X

with the topology T is called a topological space (X, T ). Elements of the basic set X in

a topological space (X, T ) are called points.

Example 2.1.2 (Real vector spaces Rn with canonical topology). The set of all open

intervals (a, b) ⇢ R induces a topology for the set of real numbers R. Accordingly, for

real vector spaces Rn one possible topology is the product topology of the latter one, which

is given by the set of Cartesian products of open intervals (a1, b1)⇥ · · ·⇥ (an, bn) ⇢ Rn.

Definition 2.1.3 (Continuity in topological spaces). Let (X1, T1) and (X2, T2) be topo-

logical spaces. A function f : (X1, T1) ! (X2, T2) is called continuous, if the preimage

of any open set Y 2 T2 is open, i.e., f�1(Y ) 2 T1.

Definition 2.1.4 (Neighborhood of points). Let (X, T ) be a topological space and x 2 X

a point. A subset V ⇢ X with x 2 V is called neighborhood of x if there exists a open

set U 2 T which contains x with U ⇢ V .

Definition 2.1.5 (Sequences in topological spaces). Let (X, T ) be a topological space.

A function  : N ! X is called sequence in X. We define elements of the sequence

as xn :=  (n) and denote with (xn) := (xn)n2N the whole sequence. A subsequence

(xn
k

)k2N of (xn) is a sequence induced by a strictly monotonic function � : N ! N with

xn
k

:= x�(k) =  (�(k)).

Definition 2.1.6 (Convergent sequences in topological spaces). Let (X, T ) be a topo-

logical space. A sequence (xn) in X is called convergent to a point x 2 X, if for every

open neighborhood Y 2 T of x there exists a n0 2 N such that xn 2 Y for all n � n0.
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Definition 2.1.7 (Compactness in topological spaces). Let (X, T ) be a topological space.

A subset K ⇢ X is called compact if every open cover K ⇢
S

i2I Ui (with Ui 2 T ) has

a finite subcover such that K ⇢
S

j2J Uj for Uj 2 T , for which I is an arbitrary index

set and J ⇢ I is a finite index set. A topological space (X, T ) is called locally compact

if every point x 2 X has a compact neighborhood.

Definition 2.1.8 (Separability and Hausdor↵ spaces). Let (X, T ) be a topological space.

Two points x, y 2 X are called separable in X if there exist a neighborhood U ⇢ X of x

and a neighborhood V ⇢ X of y, such that the section of these neighborhoods is empty,

i.e., U \ V = ;. If any distinct points x, y 2 X are separable then we call (X, T ) a

Hausdor↵ space.

Metric spaces

In order to measure distances in topological spaces in a meaningful way it is mandatory

to define a metric space and refine the concepts introduced above.

Definition 2.1.9 (Metric spaces). Let X be a basic set. A function d : X ⇥X �! R is

called a metric if the following properties are fulfilled for arbitrary elements x, y, z 2 X,

• d(x, y) � 0 ^ d(x, y) = 0 , x = y ,

• d(x, y) = d(y, x) ,

• d(x, z)  d(x, y) + d(y, z) .

A basic set X with a metric d on X is called a metric space (X, d). The elements x 2 X

are called points.

Definition 2.1.10 (Open ball in metric spaces). For a point x 2 (X, d) in a metric

space (X, d) the open ball Br(x) ⇢ X with radius r > 0 is defined as the set

Br(x) := {y 2 X | d(x, y) < r} .

Remark 2.1.11. A metric space (X, d) is a topological space in the sense of Definition

2.1.1. This is due to the fact, that the metric d induces a topology on the basic set X.

In this case a set U ⇢ X is open in the induced topology T if each point x 2 U has an

open ball which is fully contained in U , i.e.,

8 x 2 U 9 r > 0 : Br(x) ⇢ U .
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Remark 2.1.12 (Converging sequences in metric spaces). Let (X, d) be a metric space.

A sequence (xn) is called convergent to a point x 2 X, if for every r > 0 there exists a

n0 2 N, such that xn 2 Br(x) for all n � n0. Equivalently, a sequence is convergent if

for every ✏ > 0 there exists a n0 2 N, such that d(xn, x) < ✏ for all n � n0.

Definition 2.1.13 (Cauchy sequences in metric spaces). Let (X, d) be a metric space.

A sequence (xn) in X is called Cauchy sequence, if for every ✏ > 0 there exists a n0 2 N,
such that d(xn, xm) < ✏ for all n,m � n0.

Definition 2.1.14 (Complete spaces). A metric space (X, d) is called complete, if every

Cauchy sequence (xn) in X converges to a point x 2 X.

In the case of metric spaces we can give equivalent definitions of continuity and compact-

ness, which are more intuitive compared to the respective Definitions 2.1.3 and 2.1.7.

Definition 2.1.15 ((Sequential) continuity in metric spaces). Let (X, dX) and (Y, dY )

be metric spaces. A function f : (X, dX) ! (Y, dY ) is called (sequentially) continuous,

if for every sequence (xn) in X converging to a point x 2 X the corresponding image

sequence (f(xn)) converges to the point f(x) =: y 2 Y .

Definition 2.1.16 ((Sequential) compactness in metric spaces). Let (X, d) be a metric

space. A subset K ⇢ X is called (sequentially) compact, if every sequence (xn) ⇢ K

has a subsequence (xn
k

) which converges to a point x 2 K.

Definition 2.1.17 (Normed vector spaces). Let V be a vector space over a field K, e.g.,

K = R. A norm on V is a function || · || : V �! R�0, which fulfills the following

properties for vectors x, y 2 V and scalars a 2 K,

• ||x|| = 0 ) x = 0 ,

• ||ax|| = |a| · ||x|| ,

• ||x+ y||  ||x||+ ||y|| .

Here, | · | is the absolute value in K. The pair (V, || · ||) is called a normed vector space.

Remark 2.1.18. A normed vector space (V, || · ||) is a metric space in the sense of

Definition 2.1.9. Using the homogeneity property of the norm || · || for a = �1 and a = 0,

respectively, one can deduce symmetry of the norm and the identity of indiscernibles, i.e.,

• ||x� y|| = ||y � x|| ,

• ||x|| = 0 , x = 0 .
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Hence, (V, || · ||) can be interpreted as metric space (V, d) by setting the metric d as

d(x, y) := ||x� y||. In particular, (V, || · ||) is a topological space by Remark 2.1.11 with

the topology induced by the norm || · ||.

Definition 2.1.19 (Banach spaces). A normed vector space (V, || · ||) is called Banach

space, if it is complete.

Definition 2.1.20 (Euclidean vector spaces). An n-dimensional Euclidean vector space

En is a real normed vector space together with an Euclidean structure. This structure

is induced by the definition of a scalar product on vectors v, w 2 En, i.e.,

hv, wi = v · w :=

v

u

u

t

n
X

i=1

viwi .

The Euclidean scalar products allows to measure angles between vectors and induces a

norm on En by ||v|| := hv, vi.

Example 2.1.21. The vector space Rn together with the standard inner product on Rn

is an Euclidean vector space.

2.1.2 Measure theory

The following definitions introduce the basic concepts of measure theory needed for the

proper construction of the Lebesgue integral, which we need in the context of Lebesgue

spaces in later Sections. We follow [53, §2] by De Barra.

Definition 2.1.22 (�-Algebra and measurable spaces). Let ⌦ be a basic set, P(⌦) the

power set of ⌦, and I an arbitrary index set. A set A ⇢ P(⌦) containing subsets of ⌦

is called �-algebra, if the following properties are fulfilled,

• ⌦ itself is an element in A,

• for A 2 A its complement Ac is also an element in A,

• any union
S

i2I Ai of elements Ai 2 A is element in A.

The pair (⌦,A) is called measurable space and a subset Ai 2 A is called measurable

set.

Definition 2.1.23 (Measure and measure space). Let ⌦ be a set, I an arbitrary index

set, and A a �-algebra over ⌦. A function µ : A �! R [ {+1} is called measure if

the following properties are fulfilled,
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• µ(;) = 0 ,

• µ(A) � 0 for A 2 A ,

• µ
�

S

i2I Ai

�

=
P

i2I µ(Ai) , with Ai \ Aj = ; for i 6= j .

The triple (⌦,A, µ) is called a measure space.

Definition 2.1.24 (Borel �-algebra). Let (⌦, T ) be a topological space. The Borel �-

algebra B(⌦) is uniquely defined as the smallest �-algebra that contains all open sets of

⌦ with respect to the corresponding topology T .

Definition 2.1.25 (Borel measure). Let (X, T ) be a locally compact Hausdor↵ space and

B(X) the Borel �-algebra on X. Any measure µ on B(X) is called Borel measure on

X, if for each point x 2 X there exists an open neighborhood U , such that µ(U) < +1.

Remark 2.1.26 (Lebesgue-Borel measure). The canonical Borel measure µ on the mea-

surable space (Rn,B(Rn)) is called Lebesgue-Borel measure. It is chosen such that it

assigns each interval [a, b] ⇢ R (for n = 1) its length µ([a, b]) = b � a. Analogously,

it assigns each rectangle its area and each cuboid its volume (for n = 2 and n = 3,

respectively). Hence it is uniquely defined by the property,

µ([a1, b1]⇥ · · ·⇥ [an, bn]) = (b1 � a1) · · · (bn � an) .

The Lebesgue-Borel measure µ is translation-invariant and normed, i.e., µ([0, 1]) = 1.

However, µ is not complete, i.e., not every subset of a null set is measurable.

Definition 2.1.27 (Lebesgue �-algebra and Lebesgue measure). Let (Rn,B(Rn), µ) be

a measure space with the Lebesgue-Borel measure of the n-dimensional Euclidean vector

space Rn. The Lebesgue �-algebra L(Rn) is defined by adding all sets A ⇢ Rn to

B(Rn) which are between two Borel sets B1, B2 2 B(Rn) with equal Borel measure, i.e.,

B1 ⇢ A ⇢ B2 with µ(B1) = µ(B2). By this extension the Lebesgue-Borel measure µ gets

completed and hence is called the Lebesgue measure �. Naturally, the measure �(A) is

determined by B1 and B2, since �(B2\B1) = 0 and thus �(A) = �(B1) = �(B2).

Definition 2.1.28 (Lebesgue measure null set). Let (Rn,L(Rn),�) be the measure space

with the Lebesgue measure of the n-dimensional Euclidean vector space Rn. A Lebesgue

measurable set N 2 L(Rn) is called Lebesgue measure null set, if the Lebesgue measure

of N is zero, i.e., �(N) = 0. Any non-measurable subset of a Lebesgue measure null

set is considered to be neglible from a measure-theoretical point-of-view and hence its

Lebesgue measure is defined as zero as well.
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Definition 2.1.29 (Measurable functions). Let (⌦1,A1) and (⌦2,A2) be measurable

spaces. A function

f : (⌦1,A1) �! (⌦2,A2)

is called measurable if any measurable set A 2 A2 has a measurable preimage in A1,

i.e., f�1(A) 2 A1.

Following [53, §3], we are now able to introduce the Lebesgue integral for measurable

functions.

Definition 2.1.30 (Construction of the Lebesgue integral). Let (Rn,L(Rn),�) be the

Euclidean measure space of Rn with the Lebesgue measure and f : ⌦ ⇢ Rn ! R be a

Lebesgue measurable function. The Lebesgue integral of f is constructed in three steps.

i) First, one considers simple functions gn : ⌦ ! R�0 which are non-negative,

Lebesgue measurable, and only have n 2 N di↵erent values. These elementary

functions can be written as

gn =
n
X

i=1

↵i�A
i

,

for which the Ai 2 L(Rn) are Lebesgue measurable sets and fulfill ⌦ = [̇n
i=1Ai,

�A
i

denotes the characteristic function of Ai, and the ↵i 2 R�0 represent the non-

negative real values of gn. Then the Lebesgue integral of simple functions gn can be

computed using the Lebesgue measure �, i.e.,

Z

⌦

gn d� =

Z

⌦

n
X

i=1

↵i�A
i

d� :=
n
X

i=1

↵i�(Ai) .

ii) Next, one considers general non-negative functions f : ⌦ ! R�0 which are

Lebesgue measurable. These functions can be written as (pointwise) limit of simple

functions from step i). Thus, for a sequence of simple functions (gn)n2N which con-

verge pointwise and monotonically increasing against f , the Lebesgue integral of f

is defined as the limit of these approximating simple functions, i.e.,

Z

⌦

f d� :=

Z

⌦

lim
n!1

gn d� = lim
n!1

Z

⌦

gn d� .

The last equality holds due to the monotone convergence theorem [53, §3, Theorem
4]. Since the Lebesgue measure is complete, this limit process is well-defined.
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iii) Last, one considers arbitrary functions f : ⌦! R that are Lebesgue measurable.

By defining

f+ := max{f, 0} , f� := max{�f, 0}

it is possible to split f into its positive and negative parts by f = f+ � f�. Thus,

using the construction in step ii) the Lebesgue integral of f is defined as

Z

⌦

f d� :=

Z

⌦

f+ d� �
Z

⌦

f� d� .

The function f is called Lebesgue integrable if both integrals above are finite, i.e.,

Z

⌦

f+ d� < +1 ^
Z

⌦

f� d� < +1 .

Equivalently, one may require that
R

⌦ |f | d� is finite.

2.2 Functional analysis

Based on the very basic concepts introduced in Section 2.1, one is able to formulate

more abstract relationships in the context of infinite-dimensional function spaces and in

particular Lebesgue spaces. To give the needed definitions from the field of functional

analysis we follow the books of Alt [5, §1-3] and Dacarogna [45, §1].

Definition 2.2.1 (Linear operator). Let X, Y be two real vector spaces. A function

F : X ! Y is called a linear operator on X, if the following properties are fulfilled,

i) F (x+ y) = F (x) + F (y) , for all x, y 2 X ,

ii) F (�x) = �F (x) , for all x 2 X, � 2 R .

Definition 2.2.2 (Continuous operator). Let X, Y be real normed vector spaces and

F : X ! Y a linear operator. We call F continuous if it is bounded, i.e., there exists a

constant C � 0 such that,

||F (x)||Y  C||x||X for all x 2 X .

Example 2.2.3. As a canonical example for continuous linear operators between two

finite-dimensional normed spaces X, Y , one might think about the multiplication of vec-

tors x 2 X with a fixed matrix A.



2.2 Functional analysis 21

Definition 2.2.4 (Space of continuous linear operators T ). Let X, Y be real normed

vector spaces. The vector space of continuous linear operators T (X, Y ) is defined as,

T (X, Y ) := {F : X ! Y | F is continuous and linear } .

For a given F 2 T (X, Y ) the operatornorm || · ||T (X,Y ) is given by,

||F ||T (X,Y ) := sup
||x||

X

1
||Fx||Y .

If Y is even a Banach space, then T (X, Y ) is also a Banach space [5, Theorem 3.3].

2.2.1 Classical function spaces

In the following we introduce classical function spaces as they are investigated in func-

tional analysis, e.g., Lebesgue spaces. These infinite dimensional function spaces allow

us to introduce Sobolev spaces in later sections. The definitions given here basically

follow [5, §1.7 and §1.10] and [45, §1.2]

Definition 2.2.5 (Function spaces Cm). Let ⌦ ⇢ Rn be an open, bounded subset and

let m � 0. Further let ↵ 2 Nn
0 be a n-dimensional multi-index. Then the vector space of

the m-times continuously di↵erentiable functions Cm(⌦) is defined as,

Cm(⌦) = {f : ⌦! R | f is m-times continuously di↵erentiable in ⌦ and

D↵ is continuously extendable on ⌦ for |↵|  m} .

Here, |↵| denotes the sum of the n components of ↵ and the di↵erential operator D↵ is

defined as,

D↵ =
@|↵|

@↵1x1 . . . @↵
nxn

. (2.1)

The function space Cm(⌦) provided with the norm given by,

||f ||Cm(⌦) =
X

0|↵|m

||D↵f ||1 ,

is a Banach space.

The vector space C1(⌦) is thus the space of infinitely di↵erentiable functions.
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Definition 2.2.6 (Function spaces L p). Let (⌦,L(⌦),�) be a measure space with the

Lebesgue measure and 1  p < 1. The set of functions f : ⌦! R which are measurable

and Lebesgue integrable in the p-th power induce a vector space,

L p(⌦) := { f : ⌦ �! R | f is Lebesgue measurable,

Z

⌦

|f(x)|p d�(x) < 1 } .

The function space L p can be provided with a seminorm given by,

||f ||L p(⌦) :=

✓

Z

⌦

|f(x)|p d�(x)
◆

1
p

. (2.2)

In the case p = 1 the seminorm in (2.2) is replaced by a seminorm based on the essential

supremum, i.e.,

||f ||L 1(⌦) := ess sup
x2⌦

|f(x)| .

Remark 2.2.7. Due to the existence of Lebesgue measure null sets the function || · ||L p

in (2.2) is only a seminorm. Indeed, let N 2 L(⌦) be a Lebesgue measure null set, i.e.,

�(N) = 0. Then for the characteristic function �N of N we get ||�N ||L p = 0 although

�N 6⌘ 0. Thus, it is reasonable to consider a proper factor space of L p.

Definition 2.2.8 (Lebesgue spaces Lp). Let (⌦,L(⌦),�) be a measure space with the

Lebesgue measure and 1  p  1. Further, let N p(⌦) be the set of functions f 2 L p(⌦)

with ||f ||L p = 0. Then the factor space

Lp(⌦) := L p(⌦) /N p

is a normed vector space with the norm induced by (2.2). The space Lp is complete and

hence a Banach space which is called Lebesgue space.

We further define the space of locally Lebesgue integrable functions Lp
loc(⌦) as,

Lp
loc(⌦) := {f : ⌦! R | f 2 Lp(C) for all C ⇢ ⌦ compact } .

Remark 2.2.9. By definition the vectors in Lp are not functions f anymore, but equiv-

alence classes [f ]. In particular, two functions f1 and f2 are in the same equivalence

class if they are equal �-almost everywhere on ⌦, i.e., up to Lebesgue measure null sets.

Thus, the seminorm || · ||L p in (2.2) gets a norm in Lp(⌦) by || [f ] ||Lp := ||f ||L p.
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Definition 2.2.10 (Strong convergence in Lp). Let ⌦ ⇢ Rn be an open subset. Further

let 1  p  1 and (un)n2N ⇢ Lp(⌦). The sequence (un) (strongly) converges to a

function u 2 Lp(⌦), if

lim
n!1

||un � u||Lp(⌦) = 0 .

In this context we introduce the notation (un) ! u in Lp(⌦) for the strong convergence.

2.2.2 Dual spaces and weak topology

Since we are interested in compactness results in infinite-dimensional function spaces, it

is reasonable to introduce the concept of dual spaces and weak convergence. We follow

the definitions in [5, §3-5] and [45, §1.3].

Definition 2.2.11 (Continuous dual spaces). Let X be a normed vector space. Then

the (continuous) dual space X 0 of X is defined as the vector space of linear functionals

on X (cf. Definition 2.2.4), i.e.,

X 0 := T (X,R) = {F : X ! R | F is continuous and linear } .

The weak topology of X with respect to X 0 is the coarsest topology on X for which the

linear functionals in X 0 are continuous in the sense of Definition 2.2.2.

For a Banach space X the dual space X 00 := (X 0)0 of X 0 is called bidual space of X.

Definition 2.2.12 (Reflexive spaces). If the canonical embedding of a Banach space X

into its bidual space X ,! X 00 is an isomorphism, it is called a reflexive space.

Definition 2.2.13 (Hölder conjugates). Let 1 < p, q < 1, then p and q are called

Hölder conjugates to each other, if the following equality holds,

1

p
+

1

q
= 1 . (2.3)

If p = 1, then q = 1 is called its Hölder conjugate and vice versa.

Example 2.2.14 (Dual spaces of Lp). The following properties exist for dual spaces of

Lp(⌦).

i) Let 1  p  1 and let q be the Hölder conjugate of p. Then the space Lq(⌦) is the

dual space of Lp(⌦) in the sense of Definition 2.2.11.

ii) For 1 < p < 1 the space Lp(⌦) is reflexive. Note that L1(⌦) and L1(⌦) are

non-reflexive.
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Definition 2.2.15 (Weak convergence in Lp). Let ⌦ ⇢ Rm be an open subset.

• Let 1  p < 1 and (un)n2N ⇢ Lp(⌦). The sequence (un) weakly converges to a

function u 2 Lp(⌦), if

lim
n!1

Z

⌦

(un � u)' dx = 0 for all ' 2 Lq(⌦) .

In this context we introduce the notation (un) * u in Lp(⌦) for the weak conver-

gence.

• In the case p = 1 a sequence (un)n2N ⇢ L1(⌦) weakly-⇤ converges to a function

u 2 L1(⌦), if

lim
n!1

Z

⌦

(un � u)' dx = 0 for all ' 2 L1(⌦) .

In this context we introduce the notation (un)
⇤
* u in L1(⌦) for the weak-⇤ con-

vergence.

The following theorem can be interpreted as a generalization of the Bolzano-Weierstrass

theorem, which cannot be applied directly for infinite-dimensional spaces. However,

using the concept of the weak topology on a reflexive Banach space, we are able to

utilize similar compactness results.

Theorem 2.2.16. Let X be a reflexive Banach space. Then any bounded sequence

(xn)n2N ⇢ X is compact with respect to the weak convergence, i.e., if there exists a

constant C > 0 such that ||xi||X  C for all i 2 N, then there exists a subsequence

(xn
k

)k2N ⇢ (xn), such that

xn
k

* x̂ 2 X .

Proof. [5, Theorem 5.7]

2.2.3 Sobolev spaces

Finally, we are able to introduce the concept of weak di↵erentiability and consequently

the well-known Sobolev spaces, which play a key role in the formulation of variational

models in mathematical image processing due to their properties. We follow the defini-

tions in [5, §1.15] and [45, §1.4].
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Definition 2.2.17 (Weak di↵erentiability). Let ⌦ ⇢ Rn and f 2 Lp
loc(⌦) (cf. Definition

2.2.8). Further, let ↵ 2 Nn
0 be a n-dimensional multi-index. The function f is called

weakly di↵erentiable, if there exists a function g 2 Lp
loc(⌦), such that for all test functions

' 2 C1
c (⌦),

Z

⌦

f(x)D↵'(x) dx = (�1)|↵|
Z

⌦

g(x)'(x) dx .

Here, |↵| denotes the sum of the n components of ↵ and the di↵erential operator D↵ is

defined as in (2.1). The function D↵f := g is called ↵-th weak derivative of f .

Remark 2.2.18. In the context of weak derivatives the following properties can be shown

according to [45, §1.27],

i) If the ↵-th weak derivative of a function exists, it is unique a.e. on ⌦.

ii) All important rules of di↵erentiation can be generalized in a way that they are com-

patible with the definition of weak di↵erentiability.

iii) If a function f 2 Lp(⌦) is di↵erentiable in the conventional sense it is in particular

weakly di↵erentiable and its weak derivative is identical with its (strong) derivative.

Definition 2.2.19 (Sobolev spaces W k,p). Let ⌦ ⇢ Rn be an open subset. Further, let

↵ 2 Nn
0 be a n-dimensional multi-index, k � 1 an integer, and 1  p  1. The set of

functions whose weak derivatives are Lebesgue integrable is given by,

W k,p(⌦) := { f : ⌦! R |D↵f 2 Lp(⌦) for all 0  |↵|  k } .

The Banach space W k,p(⌦) with the norm

||f ||Wk,p(⌦) :=

8

>

>

>

<

>

>

>

:

 

P

0|↵|k

||D↵f ||pLp(⌦)

!

1
p

if 1  p < 1

max
0|↵|k

||D↵f ||L1(⌦) if p = 1

is called Sobolev space.

Remark 2.2.20. The following statements further characterize Sobolov spaces,

i) The space W k,p(⌦) is reflexive for 1 < p < 1.

ii) The special case of p = 2 is the only Sobolev space that is also a Hilbert space

and is denoted as Hk(⌦) := W k,2(⌦). This is a direct consequence of the Riesz

representation theorem, e.g., see [5, Theorem 4.6], and the Hölder inequality as

given in [45, Theorem 1.13].
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Definition 2.2.21 (Convergence in W k,p). Let ⌦ ⇢ Rn be an open subset. Further let

1  p  1, and (un)n2N ⇢ W k,p(⌦). The sequence (un) (strongly) converges to a

function u 2 W k,p(⌦), if

lim
n!1

||un � u||Lp(⌦) = 0 ,

lim
n!1

||D↵un �D↵u||Lp(⌦) = 0 for all 1  |↵|  k .

In this context we introduce the notation (un) ! u in W k,p(⌦) for the strong conver-

gence in accordance with Definition 2.2.10. Weak convergence in W k,p(⌦) is defined

analogously with respect to Definition 2.2.15.

Remark 2.2.22 (Uniqueness of the limit). The limit of any weakly or strongly converging

sequence (un)n2N ⇢ W k,p(⌦) is unique [45, Remark 1.16].

Remark 2.2.23. Let ⌦ ⇢ Rn be a open bounded set with a Lipschitz boundary and let

1 < p < 1. If for a sequence (un)n2N ⇢ W k,p(⌦) there exists a constant C > 0, such

that ||ui||Wk,p(⌦)  C for all i 2 N, then there exists a subsequence (un
k

)k2N ⇢ (un) and

û 2 W k,p(⌦) with,

un
k

* û .

Using the Definition 2.2.19, this is a direct corollary of Theorem 2.2.16.

Generalization of Lp and W k,p spaces

To formulate variational models in the vectorial case, the concepts introduced above

have to be further generalized. Fortunately, all important properties can be translated

to the case of functions f : ⌦! Rm for m > 1.

Definition 2.2.24 (Bochner-Lebesgue spaces Lp(⌦;Rm)). Let (⌦,L(⌦),�) be a measure

space with the Lebesgue measure, 1  p < 1, and m � 1. Then the factor space

Lp(⌦,Rm) is defined as the space of functions f : ⌦ ! Rm which are �-equal almost

everywhere on ⌦ in the sense of Remark 2.2.9 and for which the following norm is

finite,

||f ||Lp(⌦;Rm) :=

✓

Z

⌦

|f(x)|p d�(x)
◆

1
p

. (2.4)

Note that the inner norm in (2.4) is defined on Rm and hence is a generalization of

(2.2) on Lp(⌦). The space Lp(⌦;Rm) is a Banach space and is called Bochner-Lebesgue

space. One can generalize the Sobolev space W k,p(⌦) analogously.
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2.3 Direct method of calculus of variations

In this section we present the fundamental terminology and definitions needed for the

direct method of calculus of variations. In the context of the calculus of variations we

are interested in minimization problems of the form,

inf
u2X

⇢

E(u) =

Z

⌦

g(~x, u(~x),ru(~x)) d~x

�

, (2.5)

where X is a Banach space, ⌦ ⇢ Rn a open subset, g : ⌦⇥Rm⇥Rn⇥m, and a functional

E : X ! R[ {+1} on X. Based on the results in the following, we are able to analyze

problems of the form in (2.5) and prove the existence of minimizers of E in X. We

mainly follow the definitions of the books by Dacarogna in [45, §1-2] and [46].

Definition 2.3.1 (Carathéodory functions). Let ⌦ ⇢ Rn be an open subset. Further-

more, let g : ⌦ ⇥ Rm ⇥ Rn⇥m ! R be a function. We call g Carathéodory function

if,

i) for all (s, ⇠) 2 Rm ⇥ Rn⇥m the mapping ~x 7! g(~x, s, ⇠) is measurable on ⌦,

ii) for almost every ~x 2 ⌦ the mapping (s, ⇠) 7! g(~x, s, ⇠) is continuous on Rm⇥Rn⇥m.

Definition 2.3.2 (Minimizing sequence). Let X be a Banach space, E : X ! R[{+1}
a functional, and m = infx2X E(x) the infimum of E on X. Then any sequence (xn) ⇢ X

with E(xn) ! m is called minimizing sequence.

Remark 2.3.3. Note that for a minimizing sequence (xn) ⇢ X the limit m = infx2X E(x)

is not necessarily attained by any x̂ 2 X. Furthermore, one can always find a minimiz-

ing sequence for an infimum m = infx2X E(x) < +1 of a functional E on X , e.g., by

the following construction process: Pick an arbitrary x0 2 X with m < E(x0) < +1
and set � = E(x0)�m

2 . Since � > 0, there must be a x� 2 X with m+ � > E(x�) � m. If

E(x�) > m, one can progress iteratively.

Definition 2.3.4 (Sequential lower semicontinuity). Let X be a Banach space and

E : X ! R [ {+1} a functional. We call E lower semicontinuous (l.s.c) at x 2 X

if

lim inf
n!1

E(xn) � E(x) ,

for every sequence (xn)n2N ⇢ X with (xn) ! x in X. Furthermore, E is l.s.c. on X if

it is l.s.c. in every x 2 X.

For the case X = W k,p(⌦), 1 < p < 1, we call F weakly lower semicontinuous (w.l.s.c),

if it is l.s.c. with respect to the weak convergence in W k,p(⌦) (cf. Definition 2.2.21).
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Remark 2.3.5. If a functional E is continuous on a Banach space X in the sense of

Definition 2.1.15, than E and (�E) are already lower semicontinuous on X.

Definition 2.3.6 (Coerciveness). Let X be a Banach space and E : X ! R [ {+1} a

functional. We call E coercive, if for all t 2 R there exists a compact subset Kt ⇢ X,

such that,

{u 2 X | E(u)  t} ⇢ Kt .

An equivalent definition of coerciveness for X = Rn requires that lim
|~x|!1

E(~x) = +1.

2.3.1 Convex analysis

One of the most important properties for many variational formulations is convexity.

Since the existence of minimizers for variational optimization problems directly depends

on this feature, we give in the following the basic terminology and generalize the concept

of di↵erentiability to convex functionals. We follow the definitions in [45, §1.5 and §3.5].

Definition 2.3.7 (Convex sets and functions). The following definitions characterize

convex sets and functions in the scalar and vectorial case.

i) A set ⌦ ⇢ Rn is called convex set, if for every ~x, ~y 2 ⌦ and every � 2 [0, 1] the

point ~z := �~x+ (1� �)~y is in ⌦.

ii) Let ⌦ ⇢ Rn be a convex set and g : ⌦! R a real function. We call g convex, if for

every ~x, ~y 2 ⌦ and every � 2 [0, 1] the following inequality holds,

g(�~x + (1� �)~y)  � g(~x) + (1� �) g(~y) .

g is called strictly convex if for every � 2 (0, 1) the inequality above is strict.

iii) Let ⌦ ⇢ Rn be an open bounded subset and let

g : ⌦⇥ Rm ⇥ Rn⇥m �! Rm

(~x, ~u, ⇠) 7�! g(~x, ~u, ⇠)

be a function for n,m > 1 (vectorial case). We call g polyconvex, if g can be written

as a function G with,

g(~x, ~u, ⇠) = G(~x, ~u, ⇠, adj2 ⇠, . . . , adjs ⇠) for s = min{n,m} ,

for which adji ⇠ is the matrix of i ⇥ i minors of the matrix ⇠ and G is convex for

every fixed pair (~x, ~u) 2 ⌦⇥ Rm.
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Example 2.3.8. The following two examples should illustrate the relation between con-

vexity and polyconvexity. Let n = m = 2 and ⌦ ⇢ R2 an open bounded subset. The

function

g(x, u, ⇠) = |⇠|4 + |det ⇠|4

is not convex due to the determinant. However, it is polyconvex since for � := det ⇠ the

function

G(x, u, ⇠, �) = |⇠|4 + |�|4

is convex in (⇠, �).

Remark 2.3.9. Convexity implies polyconvexity, but the opposite is false (cf. Example

2.3.8).

Proposition 2.3.10 (Quadratic Euclidean norm in Rn). The quadratic Euclidean norm

|| · ||2 : Rn ! R�0 is strictly convex.

Proof. For this proof we identify the quadratic Euclidean norm of a vector ~x 2 Rn with

the scalar product of the Euclidean space, i.e., ||~x||2 = h~x, ~xi according to Definition

2.1.20. Now let ~x, ~y 2 Rn with ~x 6= ~y and 0 < � < 1. Then we can deduce,

||�~x + (1� �)~y||2 = �2h~x, ~xi + �(1� �) 2h~x, ~yi + (1� �)2h~y, ~yi
< �2h~x, ~xi + �(1� �) (h~x, ~xi+ h~y, ~yi) + (1� �)2h~y, ~yi
= �h~x, ~xi + (1� �)h~y, ~yi
= �||~x||2 + (1� �)||~y||2 .

In the case of convex functionals, we can generalize the concept of di↵erentiability.

Definition 2.3.11 (Subdi↵erential for convex functionals). Let X be a Banach space

and E : X ! R [+1 a convex functional. Then we can define the subdi↵erential of E

in u 2 X as,

@E(u) := {p 2 X 0 | E(v) � E(u) + hp, v � ui, 8 v 2 X} , (2.6)

where X 0 is the continuous dual space of X (cf. Definition 2.2.11).

Remark 2.3.12. Note that the subdi↵erential @E(u) of a convex functional E is non-

empty, but may have multiple elements. However, if E is Gâteaux di↵erentiable in

u 2 X, then the subdi↵erential is a singleton [171, §3.2.2].
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2.3.2 Existence of minimizers

This section represents the most important mathematical foundations for this thesis.

With the tools provided in the following we are able to give su�cient and also necessary

conditions for the existence of minimizers for variational formulations of the form (2.5).

The following concepts are extracted from [45, §3].

First, we start with the su�cient conditions for the existence of minimizers in the scalar

case. We investigate the vectorial case in Section 6.3.4 in more detail.

Theorem 2.3.13 (Tonelli’s theorem). Let ⌦ ⇢ Rn be a bounded open subset with Lip-

schitz boundary. Further let g = g(~x, u, ⇠) 2 C0(⌦̄,R,Rn) be a Carathéodory function

which fulfills the following conditions:

i) The function ⇠ ! g(~x, u, ⇠) is convex for every (~x, u) 2 ⌦̄⇥ R.

ii) There exist p > q � 1 and constants ↵ 2 R>0, �, � 2 R such that for every (~x, u, ⇠) 2
⌦̄⇥ R⇥ Rn the following growth condition holds,

g(~x, u, ⇠) � ↵ |⇠|p + � |u|q + � .

Let X = W 1,p(⌦), then there exists a minimizer û 2 W 1,p(⌦) of (2.5). If the function

(u, ⇠) 7! g(~x, u, ⇠) is strictly convex for every ~x 2 ⌦̄, then the minimizer û is even

unique.

Proof. [45, Theorem 3.3, p.84]

Remark 2.3.14. Note that in the scalar case above, it can be shown that convexity is

also a necessary condition for the existence of minimizers.

Now we formulate the necessary conditions for the existence of minimizers, also known

as Euler-Lagrange equations. We begin with the weak formulation in the scalar case.

Theorem 2.3.15 (Euler-Lagrange equation (weak formulation)). Let ⌦ ⇢ Rn be an open

bounded subset with Lipschitz boundary. Let p � 1 and g 2 C1(⌦⇥R⇥Rn), g = g(~x, u, ⇠)

satisfy the following growth condition: There exists a constant � � 0 such that for every

(~x, u, ⇠) 2 ⌦⇥ R⇥ Rn,

|gu(~x, u, ⇠)|, |g⇠(~x, u, ⇠)|  �
�

1 + |u|p�1 + |⇠|p�1
�

,

where g⇠ = (g⇠1 , . . . , g⇠n) and gu = @g
@u .
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Let û 2 W 1,p(⌦) be a minimizer of (2.5). Then, û satisfies the weak form of the Euler-

Lagrange equation,

Z

⌦

fu(~x, û,rû)' + hf⇠
i

(~x, û,rû),r'i d~x = 0 for all ' 2 W 1,p
0 (⌦) . (2.7)

Proof. [45, §3.4]

Remark 2.3.16 (Euler-Lagrange equation (strong formulation)). If one assumes more

regularity in Theorem 2.3.15, i.e., f 2 C2(⌦⇥ R⇥ Rn) and û 2 C2(⌦), any minimizer

û of (2.5) fulfills the following partial di↵erential equation [45, Theorem 3.11],

n
X

i=1

@

@xi
[f⇠

i

(~x, û,rû)] = fu(~x, û,rû) for all ~x 2 ⌦ . (2.8)

This relationship remains also valid in the vectorial case, i.e., for u : ⌦ ⇢ Rn ! Rm and

n,m > 1. Note that this leads to a system of partial di↵erential equations,

n
X

i=1

@

@xi

h

f⇠j
i

(~x, û,rû)
i

= fuj(~x, û,rû) for j = 1, . . . ,m, for all ~x 2 ⌦ , (2.9)

with f : ⌦⇥ Rm ⇥ Rm⇥n ! R.

Finally, the following theorem gives su�cient conditions for a functional to be w.l.s.c. in

the vectorial case, which we need for the proof of existence of minimizers for a variational

model for motion estimation in Section 6.3.4.

Theorem 2.3.17 (Acerbi-Fusco’s theorem). Let ⌦ ⇢ Rn be a open set, g(~x, s, ⇠) : Rn ⇥
Rm ⇥ Rn⇥m ! R a Carathéodory function, C 2 R>0 a constant, and b(~x) � 0 a locally

integrable function in ⌦. Furthermore, let the following growth condition hold for a fixed

1  p < 1,

0  g(~x, s, ⇠)  b(~x) + C (|s|p + |⇠|p) .

Then the functional

E(u) =

Z

⌦

g(~x, ~u,D~u) d~x ,

is weakly lower semicontinuous on W 1,p(⌦;Rm) if and only if g(~x, s, ⇠) is convex in ⇠.

Proof. [1, Theorem II.4]
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3
Medical Ultrasound Imaging

Medical ultrasound (US) imaging is the ’workhorse modality’ in routine diagnostic imag-

ing. According to a diagnostic ultrasound census market report in [106], an estimated

31.2 million patient exams were conducted in radiology departments of clinics in the

United States in the year 2005 using ultrasound technology.

The main advantage of US imaging, also known as sonography, is its relative cheap-

ness in comparison to other imaging modalities, since the purchase of a new ultrasound

imaging system costs only a fractional amount of money compared to e.g., a computed

tomography (CT) or magnetic resonance (MR) imaging system. The same holds true

for the costs of a single patient examination, where the amount of trained medical per-

sonnel and time needed for performing an imaging protocol are significantly higher for

CT imaging and MRI. Furthermore, US imaging is non-invasive and radiation-free, as it

operates with harmless sound waves, in contrast to CT or positron emission tomography.

Finally, it is the only bedside imaging modality in case of not transportable or immo-

bile patients. These arguments make medical ultrasound imaging an ideal candidate for

routine diagnostic imaging and especially prenatal examinations.

However, data acquired by an ultrasound imaging system is hard to interpret for the

untrained observer, due to a variety of physical e↵ects perturbing the images. This fact

also bears challenging tasks for computer vision and mathematical imaging processing.

In this chapter we give a short introduction to medical ultrasound imaging and focus

especially on echocardiography, i.e., US imaging of the human heart. After a summary

of the general physical principle of ultrasound in Section 3.1, we describe the typical

acquisition modalities used in echocardiogaphy in Section 3.2. We discuss the challenges

of automatic processing of US images in the context of physical phenomena perturbing

the acquired images in Section 3.3 and give details on di↵erent types of noise occuring

in ultrasound data. Finally, we describe three di↵erent ultrasound software phantoms

in Section 3.4, which can be used for validation of computer vision methods.
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3.1 General principle

We give a short introduction to the general principles of sonography and discuss the

most important physical quantities in the following. Note that this section represents

only an overview on this topic. For a more technical introduction in the field of physical

fundamentals for ultrasound imaging we refer to the book of Dössel in [57, §7.1f].

All sonographic imaging systems have in common that they are based on the principle

of the piezoelectric e↵ect, which was first investigated rigorously by the brothers Curie

in [44] in the year 1880. Using special piezoelectric crystals, e.g., quartz, one is able to

transform an electrical charge into mechanical stress and vice versa. This mechanical

stress consequently leads to a deformation of the crystal which can be used to generate

sound waves. The converse e↵ect transforms mechanical stress to the crystal (e.g., in-

duced by sound waves) to a measurable electrical voltage.

Both e↵ects of the piezoelectrical phenomenon are utilized in medical US imaging sys-

tems to:

1. generate ultrasound waves with a high frequency generator and emit them into a

patient’s body,

2. transform reflected ultrasound waves into electric signals and convert them into

ultrasound images.

Ultrasound waves are generated and detected by using special ultrasound probes, also

known as transducers, containing directed piezoelectric crystals and the corresponding

electronics. In general, the image formation process, visualization, and data storage is

realized in the hardware of the ultrasound imaging system. However, modern transduc-

ers have the capabilities to implement the whole image formation process within their

electronic circuits.

To give an understanding of the physics of ultrasound waves, we define some basic

quantities in the following. The most important property of US waves is the frequency.

Definition 3.1.1 (Frequency and wavelength). For periodic (sinusoidal) sound waves

the frequency f is defined as the number of passing wave cycles per second. The classical

unit of measure is hertz (Hz). The frequency is proportional to the speed-of-sound c in

a medium in relation to its wavelength �, i.e.,

f =
c

�
. (3.1)

In echocardiographic examinations the speed-of-sound is empirically normed to 1540m/s,

as the sound waves are mainly transmitted through blood and muscle tissue [67, §1.1].
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(a) One-dimensional plot of three sound waves

with di↵erent frequencies.

(b) Di↵erent resolution of US images due

to di↵erent frequencies.

Fig. 3.1. Illustration of the frequency of ultrasound waves in (a) and the e↵ect of

di↵erent wavelengths induced by di↵erent frequencies in medical US imaging in (b).

Humans are able to hear sound waves which have frequencies between 20Hz and 20kHz

[150, §1]. Sound waves with higher frequencies are called ultrasound waves. Figure 3.1

illustrates three one-dimensional sound waves with di↵erent frequencies. Note that they

have the same amplitude and are arranged on top of each other for the sake of clarity.

As can be seen in (3.1), the frequency f determines the wavelength � of the emitted sound

waves for a fixed transmission medium. The wavelength itself is a crucial parameter for

the resolution of the US images, which cannot be smaller than approximately twice

the wavelength [150, §1]. This fact can be explained mathematically by the Nyquist-

Shannon sampling theorem [179].

The next physical quantity of a sound wave is its loudness given by the amplitude.

Definition 3.1.2 (Accoustic pressure and amplitude). The amplitude A of a sound wave

is a logarithmic quantity which measures the ratio of the acoustic pressure P induced by

the wave to a reference value R, i.e.,

A = 20 log

✓

P

R

◆

. (3.2)

Typically, the amplitude or loudness of sound waves is measured in decibels dB [150, §1].

Medical ultrasound imaging is based on measurements of reflected ultrasound waves (cf.

Section 3.3). The amplitude of the reflected waves determines the image intensities of

the corresponding pixels during sampling in the process of image formation [190, §3].
This implies:

• bright image pixels correspond to high ultrasound wave amplitudes.

• dark image pixels correspond to low ultrasound wave amplitudes.
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The position of pixels corresponding to the measurement of reflected ultrasound waves

is determined by the time needed for transmission to a reflector in the medium and back

to the transducer, i.e., the temporal interval between the generation of the ultrasound

wave pulse and the measurement of reflections. Thus, the position of an image pixel

encodes the penetration depth of the pulse [190, §3]. This implies,

• low positions of image pixels correspond to high penetration depths.

• high positions of image pixels correspond to low penetration depths.

Again, we state that the description given here is a simplification of the physical processes

of ultrasound wave interaction and the post-processing steps needed for image formation.

For a more detailed introduction to the general principle of medical ultrasound imaging

we refer to [57, §7].

3.2 Acquisition modalities

In this section we summarize the most common imaging modalities in medical ultrasound

imaging and their applications in echocardiography based on the books of Flachskampf

[67, §1.2.3], Otto [150, §1], and Sutherland et al. [190]. Since Doppler imaging and

contrast-enhanced imaging are not considered in the course of this thesis, we refrain

to discuss them here and instead refer to [190] and [67, §5], respectively.

The most simple modality for medical US imaging measures the reflection of ultrasound

waves on a single line and plots the amplitude (A) signal as an one-dimensional graph.

Historically, this modality was the first imaging technique in echocardiography and is

known as A-mode imaging.

Due to the relatively low computational e↵ort for the conversion hardware, it is possible

to send many A-mode pulses in a short time interval. By adding temporal information

and plotting the signal continuously, it is possible to measure the motion (M) of a

structure-of-interest over time. This imaging mode is called M-mode imaging and is

e↵ectively applied in echocardiographic tasks where a high temporal resolution is needed,

e.g., measurement of myocardial valve function [67, §24.2.2]. Typically, one can obtain up

to 3800 lines per second for a penetration depth of 20cm [150, §1]. Figure 3.2a illustrates
M-mode imaging along an one-dimensional line (red) perpendicular to a murine left

ventricle in short axis view. Clearly, one can measure the contraction and relaxation of

the myocardium with high temporal and spatial accuracy during systolic and diastolic

phase of the myocardium cycle, respectively. Note that one needs the temporal resolution

of M-mode for the high heart beat rate of the murine heart (⇠ 450� 600bpm).
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(a) M-mode imaging (b) B-mode imaging

Fig. 3.2. Images from two common imaging modalities used in echocardiography.

The most commonly used imaging modality in echocardiography measures many M-

mode lines in a rectangular sector (linear transducer) or cone shaped sector (convex

transducer) by sweeping through the field-of-view either mechanically or electronically

[67, §1.2.3]. The measured signals are stitched together and converted to a brightness

(B) image according to the measured amplitudes (cf. Section 3.1). For this reason this

technique is known as 2D B-mode imaging.

Due to the problem of possible interference, it is not possible to send several ultrasound

wave pulses at the same time. Thus, the time needed for a single B-mode image in-

creases linearly with the number of M-mode scan lines. This leads to a significant drop

in temporal resolution compared to simple M-mode imaging, e.g., for 128 scan lines

one can capture up to 30fps at a penetration depth of 20cm [150, §1]. However, the

additional spatial dimension eases the task of aligning the imaging plane within the

volume-of-interest during standardized examination protocols, thus leading to a better

reproducibility of measurements. Furthermore, medical parameters of higher order can

be measured more accurately, e.g., the mass of the left ventricle [67, §10.3.2]. Figure

3.2b shows an image from B-mode imaging of a human myocardium in a long-axis view.

Novel transducers use a two-dimensional array of single-cell piezoelectric crystals to

acquire a full three-dimensional volume. Their application is specialized for real-time

3D (RT3D) echocardiography and prenatal diagnostics. Although, this technique is

not yet as widespread as B-mode imaging, RT3D imaging is on the verge of becoming a

new golden standard in echocardiography [150, §1], since it is capable of capturing the

full anatomy of the myocardium within a single acoustic window [105, 135]. Modern

3D transducers can acquire a pyramidal sector of 30� ⇥ 50� at 30fps and a sector of

105�⇥105� by stitching 4�7 consecutive imaged volumes triggered to a common phase of

an electrocardiographic signal [67, §8.1]. For a detailed report on the future implications

of RT3D imaging by the American Society of Echocardiography we refer to [105].
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3.3 Physical phenomena

As described in Section 3.1, medical ultrasound imaging is based on the measurement of

reflections of the transmitted ultrasound wave pulses from structures within the imag-

ing plane. However, the physical interactions of ultrasonic waves with tissue are quite

complex and are subject to research in physics, mathematics, and biomechanical engi-

neering, e.g., see [57]. To give an explanation for the problems of medical ultrasound

data processing, described in the course of this work, we discuss the major physical phe-

nomena of ultrasound wave interactions with anatomical structures in a simplified way

in the following.

The acoustic properties of anatomical structures directly depend on their respective mass

density and compressibility [190, §3]. Whenever an emitted pulse of ultrasound waves

meets an interface between two structures with di↵erent acoustic properties, two e↵ects

occur simultaneously:

1. a part of the waves gets reflected at the interface.

2. the remaining part of the waves gets transmitted into the second medium.

Transmitted waves at the boundary of two anatomical structures are also known as

refracted waves. Both reflected as well as refracted ultrasound waves are discussed in

detail below.

In general, the amount of reflected and refracted ultrasound waves is determined by the

di↵erence in acoustic impedance between two media, e.g., two di↵erent types of organic

tissue.

Definition 3.3.1 (Acoustic impedance). The acoustic impedance Z of a medium de-

pends on the density ⇢ of the medium and the speed-of-sound c in that medium [150, §1],
i.e.,

Z = ⇢ c . (3.3)

Note that physical quantities such as the temperature have a direct influence on ⇢ and c

and thus also on the acoustic impedance.

For example, blood at body temperature has an acoustic impedance of 1.48·106 kg
s·m2 , while

bones have an average acoustic impedance of 7.75 · 106 kg
s·m2 according to [61].

Based on the definition of acoustic impedance, one is able to describe physical e↵ects of

ultrasound wave interactions at boundaries of anatomical structures, such as reflection

and refraction.
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US transducer

Tissue 1

Tissue 2
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(a) Schematic illustration of reflections (b) 2D B-mode imaging

Fig. 3.3. Reflection between two types of tissue with di↵erent acoustic properties

in a schematic illustration (a) and real 2D B-mode image (b) inspired by [150, §1].

Reflection

Following [120], one can calculate the ratio of reflected US waves rZ based on the acoustic

impedance Z in Definition 3.3.1 by,

rZ =

✓

Z2 � Z1

Z2 + Z1

◆2

. (3.4)

Note that for two media with equal acoustic impedance Z1 = Z2 the ratio of reflected

US waves in (3.4) is rZ = 0 and thus all waves are transmitted to the second medium.

On the other hand for a huge di↵erence in acoustic impedance, it follows that rZ ⇡ 1,

meaning that almost all US waves are reflected at the interface.

In general, one can distinguish between two di↵erent forms or reflection [150, §1], i.e.,
specular reflection at smooth interfaces of anatomical structures and di↵use reflections

at structures smaller than the wavelength � of the US waves (cf. Definition 3.1.1). The

latter e↵ect is also known as scattering and results in granular patterns in the US image

called speckle noise. We discuss this e↵ect in more detail in Section 3.3.1.

In the case of specular reflection, the amount of received ultrasound waves at the trans-

ducer is determined by the angle of incidence ↵ between the US wave pulse and the

reflecting interface [190, §3]. Similar to the physics of light reflection, the angle of in-

cidence corresponds to the angle of reflection. For this reason one receives the highest

amount of reflected ultrasound waves at the transducer, if it is aligned perpendicular

to the reflecting surface [150, §1]. For very large incidence angles ↵ one can expect

dropouts of image information in the area of reflection, since it is unlikely that ultra-

sound waves reach the transducer. Figure 3.3 illustrates the concept of specular reflection

in a schematic illustration and a real 2D B-mode image of a highly reflective surface.
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(a) Attenuation of a 1D sound wave (b) Negative attenuation e↵ect

Fig. 3.4. (a) Schematic illustration of the attenuation e↵ect for one-dimensional

sound waves and (b) negative attenuation e↵ect due to overcompensation.

Refraction and attenuation

Ultrasound waves which are not reflected at a interface between structures with di↵erent

acoustic impedance are transmitted to the second medium. Depending on the acoustic

properties in that medium, the remaining waves get refracted, i.e., their direction

of expansion is altered by the new conditions. This e↵ect is also known as acoustic

lensing and is similar to light waves passing a curved glass lens [150]. Refraction can

lead to artifacts in the image formation process, since an ultrasound transducer cannot

distinguish between refracted and straight echos in the image formation process [218].

Figure 3.3a shows the e↵ect of refraction in a schematic illustration.

During the expansion of ultrasound waves in tissue the transmitted energy of the pulse is

continuously absorbed by conversion to heat due to friction [150, §1]. Together with scat-

tering and reflection, this consequently leads to a loss of acoustic pressure known as at-

tenuation. The impact of attenuation is mainly determined by the acoustic impedance

Z of a medium through which the ultrasound waves are transmitted and the frequency

f (cf. Section 3.1), and can be expressed by the following power law [120],

P (x+�x) = P (x) e��(f,Z)�x . (3.5)

Here, P is the acoustic pressure (cf. Definition 3.1.2), � is the attenuation coe�cient

depending on the acoustic properties of the tissue, and�x is the distance of transmission.

Figure 3.4a illustrates the loss of acoustic pressure for a one-dimensional sound wave

depending on the transmitted distance d. Due to attenuation there is a trade-o↵ between
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(a) 1st setting (b) 2nd setting (c) 3rd setting (d) 4th setting

Fig. 3.5. Four di↵erent gain settings manually calibrated during an echocardio-

graphic examination of the human heart in an apical four-chamber view.

the resolution of US imaging and the penetration depth of the ultrasound waves [150,

§1]. The higher the frequency f , the smaller is the wavelength �, and thus the better

is the resolution of the obtained ultrasound images as discussed in Section 3.1. On the

other hand, with increasing frequency the impact of attenuation in (3.5) gets stronger

and hence one loses penetration depth. As a rule of thumb, adequate imaging is possible

up to a distance of 200 wavelengths [150]. For this reason physicians have to balance

resolution and penetration depth by choosing reasonable settings and US transducers.

Due to the attenuation diagnostic ultrasound imaging systems use a technique known

as attenuation correction to compensate for the loss of acoustic pressure in deeper tissue

regions [190, §3]. Depending on the imaging setup, the electronic hardware of the US

imaging systems tries to compensate for the e↵ect of attenuation by amplifying received

ultrasound signals from deeper regions. This technique is called depth gain compensation

and is used to give the same image intensity to identical structures in the imaging plane.

However, this can result in unwanted e↵ects, e.g., negative attenuation as illustrated in

Figure 3.4b. Here, the liquid matter leads to relatively low attenuation for the trans-

mitted US waves and thus to overcompensation by the attenuation correction.

In order to give physicians more flexibility during examination of patients, it is also

possible to calibrate the depth gain manually for di↵erent depths of the image. Figure

3.5 illustrates four di↵erent gain settings in 2D B-mode images of an echocardiographic

examination. As can be seen for the first setting, the lower regions of the image near the

left atrium are di�cult to recognize due to attenuation. The second setting shows the

anatomical structures of the lower part of the left ventricle and the left atrium clearly, but

shows to high gain in the apical region. The third setting is globally overcompensated,

while the fourth setting is adequate for echocardiographic examinations.
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Fig. 3.6. Multiplicative speckle noise in the lateral wall of a hypertropic left

ventricle from an echocardiographic examination.

3.3.1 (Non-)Gaussian noise models

Next to specular reflections discussed above, there exist di↵use reflections or scattering,

leading to granular image artifacts called speckle noise. The origin of these speckles is the

presence of tiny inhomogenities in the tissue which are smaller than the wavelength of

the ultrasound wave pulse and hence cannot be resolved in the image formation process

[150, 190], e.g., microvasculature or red blood cells. Due to their di↵erent acoustic

impedance they cause ultrasound waves to reflect locally, leading to constructive and

destructive wavelet interference [26, 67]. Their presence is especially conspicuous in soft

tissue and liquid matter, such as the blood in vascular structures [218]. Figure 3.6 shows

typical granular speckle artifacts in an US B-mode image of the left ventricle from an

echocardiographic examination.

Although these speckle pattern are widely rated as physical noise, their consideration

has several advantages in clinical environments. First, the scattered signal from moving

blood cells is used as the base for Doppler velocity imaging (cf. [190, §3]) and thus en-

ables many important examination protocols for medical ultrasound imaging. Second,

description and recognition of speckle patterns is the focus of a research field in biomed-

ical physics known as ultrasound tissue characterization. Over the last decades several

approaches have been proposed to characterize di↵erent states of pathological tissue by

means of speckle analysis, e.g., [178, 210]. The idea is to deduce medical parameters

from the texture of multiplicative speckle noise in ultrasound images and use them for

quantitative comparison of healthy and diseased tissue. For a state-of-the art review we

refer to the work of Noble in [143].
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Physical noise modeling is a standard approach in recent computer vision methods for

medical ultrasound imaging as we discuss below. All approaches considering speckle arti-

facts have in common that they use statistical formulations to incorporate non-Gaussian

noise models into denoising and segmentation methods. In this section we focus on three

di↵erent noise models for medical ultrasound imaging.

First, we discuss the standard noise model in computer vision tasks, i.e., additive Gaus-

sian noise, since there still exist methods (implicitly) assuming this form of noise for

ultrasound images, e.g., for segmentation in [42, 228] and for motion estimation in

[157, 205]. Subsequently, we describe the most commonly assumed noise model for

medical US imaging, i.e., the Rayleigh noise model. The Rayleigh distribution is widely

accepted in the literature and is used, e.g., for segmentation in [16, 63, 90, 123, 170] and

for denoising in [3, 26, 141]. Finally, we introduce a noise model which recently gained

attention in the field of denoising, i.e., the Loupas noise model. To the best of our

knowledge this model has only been used in denoising problems [41, 54, 110, 130, 167],

but not for segmentation of medical ultrasound images so far. To illustrate the di↵erent

characteristics of these noise models, Figure 3.7a-3.7d demonstrate the respective im-

pact on a two-dimensional synthetic image, and Figure 3.7e-3.7h show the perturbation

of a corresponding one-dimensional signal. One can observe that the appearance of the

Loupas and the Rayleigh noise model is in general stronger compared to the additive

Gaussian noise, especially for bright image intensities. Furthermore, they realize multi-

plicative noise models, which are signal-dependent. Hence, an appropriate choice of data

fidelity terms for computer vision tasks is required to handle the perturbation e↵ects of

di↵erent noise models accurately.

Note that next to the three noise model discussed in the following, there exist various

other signal-dependent models for the statistical distribution of ultrasound signals, e.g.,

Rician family distributions [210], Gamma distributions [8], Nakagami distributions [178],

K-distributions [62], and multiplicative Gaussian noise models [110, 167]. The latter one

has been studied extensively in the context of laser speckle in optics and for synthetic

aperture radar (SAR) imaging [223].

Although many di↵erent distribution models have been investigated until today, it is still

unclear which one is suited best for di↵erent computer vision tasks in medical ultrasound

imaging [16, 192]. The contribution of this work is to qualitatively assess which of the

three discussed noise models is suited best for low-level and high-level segmentation of

medical ultrasound images in Section 4 and 5, respectively. Furthermore, we investigate

the impact of alternative data fidelity terms considering multiplicative speckle noise on

the robustness and accuracy of optical flow estimation in Section 6.
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Fig. 3.7. Impact of di↵erent noise models on a two dimensional synthetic image

and a corresponding one-dimensional signal.
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Additive Gaussian noise

Additive Gaussian noise is the standard noise model in computer vision and mathe-

matical image processing, as it e↵ects most real images. The degradation by additive

Gaussian noise, also called white noise, can occur during image capture, transmission via

electronic devices, or even processing on hardware chips [184, §2.3.6]. The perturbation
with white noise during the image formation process is modeled as,

f = u + ⌘ , (3.6)

for which ⌘ is a normal distributed random variable with mean 0 and variance �2, i.e.,

the probability density function of ⌘ is given by,

p(⌘) =
1p
2⇡�

e�
⌘

2

�

2 .

As gets clear from (3.6), this form of noise is signal-independent and has a globally

identical distribution of noise. This fact can also be observed in Figure 3.7b and 3.7f.

The assumption of the additive Gaussian noise model is often implicitly given by using

the standard L2 data fidelity term as distance measure. For example, this is the canonical

choice of fidelity in many segmentation formulations, e.g., in the Mumford-Shah or Chan-

Vese model as we discuss in Section 4.3.3. Since additive Gaussian noise is the most

common form of noise in computer vision, these segmentation methods are successful on

a large class of images.

Rayleigh noise

The most commonly assumed noise model in medical ultrasound imaging is the Rayleigh

noise model. The classic example for Rayleigh noise is scattering caused by red blood

cells. In case of the Rayleigh noise model, the image formation process can be modeled

as,

f = u ⌫ . (3.7)

Here, ⌫ 2 R�0 is a Rayleigh distributed random variable with the probability density

function,

p�(⌫) =
⌫

�2
e�

⌫

2

2�2 ,

in which � 2 R>0 is a fixed parameter determining the magnitude of scattering. As

can be seen in Figure 3.7d and 3.7h, the multiplicative nature of Rayleigh noise in (3.7)

leads to heavy perturbations in bright image regions.
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Historically, Burckhardt translated the results from research on laser speckles to the

investigation of speckle patterns in medical ultrasound imaging in [26]. He stated that

in the case of many uniformly distributed scatterers within the same resolvable image

pixel, the measured amplitude follows a Rayleigh distribution.

Wagner et al. investigated the Rayleigh noise model as a special case of Rician distribu-

tions in [210], and proposed to use this more general form of noise modeling for medical

ultrasound imaging, as the Rayleigh distribution would not be appropriate in every sit-

uation.

This finding could be fortified by the results of Tuthill, Sperry, and Parker in [202],

who performed a quantitative comparison between Rician and Rayleigh distributions

depending on the number of local random scatterers within a single resolvable image

pixel. Since then the Rayleigh noise model has been used for many computer vision

tasks in medical ultrasound imaging, e.g., [3, 16, 26, 63, 90, 123, 141, 170, 192].

Despite the popularity of the Rayleigh noise model for medical ultrasound imaging, re-

cent findings suggest that it is rather unsuitable for images acquired in daily clinical

routine, cf. [16, 41, 192] and references therein.

One possible reason for this new tendency in the literature is the fact, that since approxi-

mately the mid of the 1990s clinical ultrasound imaging systems generate log-compressed

images instead of sampling the radio frequency (RF) envelope obtained before. This

reduction of the dynamic range of the RF signals is meant to map all important infor-

mation to grayscale images and hence to make subjective findings during examinations

more easy for the physicians [67, §1.2.7]. Especially, the developing companies of clini-

cal ultrasound imaging systems continuously employ new nonlinear transformations, i.e.,

logarithmic amplifiers [62].

Loupas noise model

The last form of noise we want to discuss originates from an experimentally derived

model for multiplicative speckle noise by Tur, Chin and Goodman in [201]. The image

formation process is given by,

f = u + u
�

2 ⌘ . (3.8)

In this context, u is the unbiased image intensity and ⌘ is a normal distributed random

variable with mean 0 and variance �2 as in the case of additive Gaussian noise.

In general, the parameters � and � depend on the imaging system, the application

settings, and the examined tissue and determine the degree of signal dependency and

thus the characteristics of the multiplicative noise. Typical values for � can be found

in the literature, e.g., in [167] the authors choose � = 2 to model the noise in medical
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US imaging. For the case � = 0 one simply obtains the case of additive Gaussian noise

discussed above. In [130] Loupas et al. initially proposed the case � = 1 for the use on

medical ultrasound images. This special case is known as Loupas noise model and the

image formation process consequently is given as,

f = u +
p
u ⌘ . (3.9)

Although this noise model is somewhat similar to the additive Gaussian noise model

introduced discussed above, its impact on the given data f di↵ers fundamentally from

the influence of additive Gaussian noise, due to the multiplicative adaption of the noise

level ⌘ by the signal
p
u. Loupas noise leads to heavy distortions in the image due to

the signal-dependency in (3.8), especially in regions with high intensity values, as can be

observed in Figure 3.7c and 3.7g, in which a spatial variation of signal amplitudes leads

to di↵erent noise variance. This is due to the multiplicative nature of the Loupas noise

model, since the noise variance directly depends on the underlying signal intensity.

During a quantitative analysis of a huge dataset of US B-mode images from di↵erent

clinical ultrasound imaging systems, Tao, Tagare, and Beaty observed in [192] a fun-

damental relationship between the noise variance and the local mean intensity. They

found that the standard deviation of gray levels in tissue as well as in blood varies ap-

proximately linearly with the local mean of the intensities. As we show in Section 6.3.1,

this corresponds to the characteristics of the Loupas noise model in (3.9).

Though the Loupas noise model recently gained popularity within the denoising com-

munity, e.g., [41, 54, 110], its use has not been investigated in the context of image

segmentation to the best of our knowledge. This motivates a qualitative and quantita-

tive comparison of the latter three noise models for this typical computer vision task

within this thesis.

3.3.2 Structural noise

In addition to noise artifacts induced through scattering by tiny inhomogenities, we

discuss perturbations by structural noise in the following. The impact of structural

noise on medical ultrasound images is much stronger than the influence of speckle noise,

since it not only e↵ects single pixels but whole image regions. In general, structural

noise occurs in the presence of strong reflectors in the image, e.g., bone structures or

air.

One canonical example of structural noise is induced by insu�cient covering of the

US transducer with acoustic coupling gel. This causes strong reflections right at the
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Fig. 3.8. Illustration of shadowing e↵ects of di↵erent extend due to strong reflectors

in two US B-mode images.

transducer due to the presence of air bubbles, which have a significantly lower acoustic

impedance (cf. Definition 3.3.1). The immediate reflection of ultrasound waves leads to

dropout of signal in the image regions beneath the air bubbles [150, §1].

The most important form of structural noise within this work are so called acoustic

shadowing e↵ects. Acoustic shadowing occurs when a strong reflector (having a signif-

icantly di↵erent acoustic impedance as the surrounding tissue) blocks the transmission

of ultrasound waves beyond that point [150, §1], e.g., bones or the lungs. Similar to

the shape of a shadow caused by intransparent objects in a light beam, the acoustic

shadow follows the transmission path of the ultrasound waves. This leads to the fact

that a small reflector near the transducer can cause large shadowing e↵ects to the image

regions beyond. Typically, these regions appear dark with only little signal intensities,

since almost no ultrasound echo is received from these regions.

Figure 3.8 shows typical structural artifacts caused by shadowing e↵ects in two situa-

tions with di↵erent extend. Due to the presence of a strong reflector in the upper part of

the US B-mode images, one obtains images perturbed by acoustic shadowing (delineated

by the red dashed lines). As can be seen, almost no information can be received from

the shadowed regions. Furthermore, the closed contour of the connected anatomical

structure in the left image shows gaps. This leads especially to problems for automatic

segmentation algorithms as we discuss in Section 5.3.1.

Another class of structural noise artifacts is caused by reverberation. Reverbera-

tion is caused by two or more highly-reflective interfaces and leads to multiple linear

high-amplitude ultrasound signals projecting the structure of the reflectors repeatedly

beneath the correct image position [218, §1]. The reason for this e↵ect is that ultrasound

waves are reflected several times between the reflectors. At each reflection a part of the

ultrasound waves is transmitted back to the transducer, leading to a periodic received

signal.
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3.4 Ultrasound software phantoms

The validation of novel algorithms from computer vision and mathematical image pro-

cessing for the analysis of medical US images turns out to be di�cult on real data due

to missing ground truth information. First, obtaining manual segmentations by physi-

cians for RT3D data generated by state-of-the art US transducers (cf. Section 3.2) is

inpracticable due to the enormous e↵ort of delineating each slice of a three-dimensional

volume manually.

Validation of motion analysis techniques is even more di�cult, since for evaluation of

dense motion estimation methods one needs ground truth vector fields. Obtaining these

ground truth data generally requires complex experimental setups with very precise de-

vices [10]. Certainly, the generation of ground truth vector fields for real patient data is

nearly impossible. For this reason, many works are restricted to qualitative evaluations

instead of quantitative measurements or measure the performance only for few manually

depicted points, e.g., in [11].

To overcome this fundamental problem of method validation on medical ultrasound

data, some authors evaluate their algorithms on synthetic data generated with the help

of software phantoms. Software phantoms o↵er a lot of flexibility, because the physical

properties of both simulated imaging system and the imaged object can be adjusted eas-

ily. Furthermore, ground truth for the validation of image analysis methods is implicitly

given by the defined geometry. Existing ultrasound image simulations focus on particu-

lar physical e↵ects. In the following we discuss three fundamentally di↵erent approaches

from the literature.

Speckle noise simulation

In [154] Perreault and Auclair-Fortier proposed a method to simulate the e↵ect of mul-

tiplicative speckle noise in synthetic images. First, the geometry of a noise-free input

image is altered by resampling it on a polar transformed grid. By this approach they

simulate the e↵ect of lower resolution in deeper image regions as it can be observed in

2D B-mode images obtained with a convex transducer. Second, they add multiplicative

speckle noise similar to Loupas noise to the synthetic image (cf. Section 3.3.1.)

For a validation of the proposed motion estimation algorithms in Section 6.3.6 we ex-

tended the speckle noise simulation from [154] to three dimensional volumes and the

anatomical structure of the human heart as geometry for the simulation to enhance

realism. In particular we used the extended cardiac-torso (XCAT) phantom proposed

by Segars et al. in [177], which provides data that has detailed anatomic structures
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(a) XY plane (b) XZ plane (c) YZ plane

(d) XY plane (e) XZ plane (f) YZ plane

Fig. 3.9. Orthogonal slices of the anatomy of the human heart as noise free ge-

ometry of the XCAT phantom (top row) and the corresponding three-dimensional

speckle noise simulation (bottom row).

and is applicable for simulating di↵erent medical imaging modalities, e.g., computed

tomography and positron emission tomography. Furthermore, this phantom includes

ground-truth deformation vectors which encode the motion of the heart during the my-

ocardial cycle.

Using the speckle noise simulation in combination with the XCAT phantom, we are able

to produce realistic 4D datasets for the validation of computer vision methods and in

particular motion estimation algorithms. Figure 3.9a - 3.9c show three orthogonal slices

of the ground truth geometry of the XCAT phantom in a 142⇥ 139⇥ 132 voxel volume,

with each voxel having a spatial resolution of 1mm3. Additionally, Figure 3.9d - 3.9f

show the resulting speckle noise simulation.

FIELD simulation software

The most straight forward approach to simulate US images is to solve the wave equation

numerically for a given geometry and specified conditions, e.g., the transducer geome-

try, as demonstrated in [108, 111]. By this, all interactions between the US wave and
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Fig. 3.10. Software simulation of an artificial US B-mode image of a human kidney

generated with FIELD. Image downloaded from http://field-ii.dk/.

soft tissue are simulated accurately and thus very realistic results are obtained. How-

ever, realistic simulation of ultrasound data is challenging, due to the complexity of

the underlying partial di↵erential equations and their approximation. For a overview

on mathematical models for reconstruction in ultrasound tomography in both time and

frequency domain we refer to [142, §7.4].

In [108] Jensen proposed an ultrasound simulation software called FIELD, which is

based on the Tupholme-Stepanishen method to compute approximations of both pulse-

echo and continuous wave fields in di↵erent media. Furthermore, the software is able

to simulate di↵erent transducer geometries and excitations. The simulation has already

been used for the validation of computer vision methods, e.g., in [16]. Figure 3.10 shows

a simulated 2D B-mode image of a human kidney calculated with FIELD. Due to the

exact mathematical modeling of the wave transmission and reflections the calculated

images appear very realistic compared to real medical ultrasound images.

The FIELD code is mainly written in C for fast executions and has a MathWorks

MATLAB frontend for user interaction. The software has been extended several times

and the latest release of FIELD2 can be downloaded for free on http://field-ii.dk/.

The disadvantage of this approach is that, due to the complexity of the calculations,

generating a single image can take up to 24 hours [111], which is rather impractical in

many cases. For this reason Karamalis, Wein, and Navab proposed in [111] to model the

propagation of ultrasound waves by the Westervelt equation, which is solved explicitly

by finite di↵erence schemes. As this can be performed highly-e�cient on modern GPUs,

they achieve a significant speed-up in the generation of simulated US images and are

able to generate images in under 80 minutes.
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Fig. 3.11. Illustration of the geometrical acoustics simulation for the geometry of

the left ventricle obtained from the XCAT phantom.

Geometrical acoustics simulation

To overcome the limitations of the previously discussed software phantoms, Law et al.

recently proposed in [120] a simulation software for medical ultrasound images based on

geometrical acoustics. In particular, they use raycasting techniques to approximate the

propagation of acoustic waves in simulated tissue for training of medical personnel, e.g.,

for US-guided needle insertion procedures. With the help of parallelized GPU imple-

mentation they are able to produce realistic ultrasound images with their characteristic

visual artifacts in real-time. By modeling of the ultrasound beam using a superposition

of Gaussian functions, the authors simulate di↵erent transducer settings, e.g., frequency

or focal length. Furthermore, typical perturbations such as acoustic shadowing, attenu-

ation and reverberation e↵ects can be simulated at a high level of realism. Mesh surfaces

are used in [120] to determine intersections with interfaces of simulated tissue.

We extended the geometrical acoustic simulation from [120] to enable the simulation of

medical ultrasound imaging in three-dimensional volumetric voxel data. By this we are

able to incorporate the anatomical information of the XCAT phantom discussed above

to increase the realism of the simulated images and have the advantage of ground truth

motion information. Furthermore, we realized the simulation of multiplicative speckle

noise using a Rayleigh distribution, having adaptive parameters with respect to the un-

derlying geometry of the XCAT phantom, i.e., the septal wall of the left ventricle shows

di↵erent noise patterns compared to the lateral wall. Figure 3.11 shows two di↵erent

view angles simulating an echocardiographic examination of the left ventricle.

In future work, this extended geometrical acoustics software phantom is meant to pro-

vide a fast and flexible simulation of medical ultrasound images for the validation of

novel methods in computer vision and mathematical image processing.
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4
Region-based segmentation

Image segmentation has been a fundamental challenge in computer vision ever since.

The task to divide an image into several semantic parts according to a given similarity

criterion is called ’segmentation problem’ and arises in various applications of automated

image processing. In this chapter we deal with the special case of low-level segmentation,

i.e., segmentation based on image features only. In this context we particularly focus

on variational formulations modeling region-based segmentation tasks for a broad field

of applications. We investigate two di↵erent paradigms which correspond to popular

segmentation formulations from the literature.

First, we propose a region-based variational segmentation framework as generalization

of the Mumford-Shah segmentation formulation and incorporate typical physical noise

models for medical ultrasound imaging. We evaluate these noise models and investigate

their impact on segmentation accuracy and robustness during segmentation. The ob-

tained results on synthetic and real patient data indicate that physical noise modeling

is essential for satisfying segmentation results in medical ultrasound imaging.

Second, we introduce a discriminant analysis based segmentation model, for which we

determine solutions with the help of level set methods. This variational model is mo-

tivated by observations made for the popular Chan-Vese segmentation method applied

on medical ultrasound data. We attribute problems of the Chan-Vese method in the

presence of multiplicative speckle noise to an inappropriate data fidelity term and the

convergence to unwanted local minima. We overcome the drawbacks of this model by

determining an optimal threshold, which is incorporated into a novel segmentation for-

mulation. We show the superiority of the proposed method for real patient data from

echocardiographic examinations and quantitatively measure the segmentation perfor-

mance by comparison to manual delineations from medical experts.
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4.1 Introduction

The task of automated image segmentation has become increasingly important in the

last decade, due to a fast expanding field of applications, e.g., in biomedical imaging.

The main goal of segmentation is to partition an image domain into meaningful sub-

regions according to an appropriate homogeneity criterion. This criterion is in general

chosen such that the pixels are grouped into structures which correspond to the same

objects within the semantic context, e.g., the segmentation of satellite images into crops,

urban areas, and forests using color information [180, §10].
Human perception itself groups visual stimuli according to their relationships and as-

sembles these to higher order components. Some of these relationships have been inves-

tigated intensively by psychologists, which led to a field of research known as the theory

of Gestalt [70, §14.2]. Some of these relationships, important for human perception, are

given in the following:

• Similarity - features are similar according to some homogeneity criterion,

• Proximity - features share the same spatial locality,

• Motion - features having coherent motion within an image sequence.

These relationships can be interpreted as low-level features as they can be recognized

immediately without further knowledge. We focus on this type of relationships within

this chapter. Human experience and training helps to recognize higher-order relation-

ships, e.g., familiarity as feature to recognize known objects. These high-level features

are covered in Section 5. Similar to the grouping of visual stimuli in human perception,

segmentation in computer vision can be formulated as a problem of grouping image

pixels to regions according to the relationships indicated above.

In the following we give an overview on typical segmentation tasks and applications from

the literature. We focus in particular on the application of segmentation in medical ul-

trasound imaging and give an overview of related work on this topic. We discuss the

classical variational segmentation models of Mumford-Shah and Chan-Vese in Section

4.2, as these inspired the two proposed segmentation formulations in this work. Subse-

quently, we introduce in Section 4.3 a region-based variational segmentation framework

for the incorporation of physical noise models and a-priori knowledge about the expected

solutions. We give an introduction to level set methods in Section 4.4 and discuss rel-

evant details for numerical realization in the context of level set segmentation. Using

this concept, we are able to analyze problems of the Chan-Vese method, when applied

on medical ultrasound data in Section 4.5. Finally, we propose a novel discriminant

analysis-based segmentation model, which is realized by level set methods.
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4.1.1 Tasks and applications for segmentation

Many computer vision tasks can be interpreted as inference problem, i.e., one wants to

draw logical conclusions from a given image under certain premises. However, since im-

ages can contain a lot of potential data, it is not obvious which pixels help to solve the

inference problem and which not. In this context, segmentation can reduce the amount

of information significantly and deliver a compact representation that summarizes all

pixels of interest [70, §14]. This goal is common in all segmentation tasks and appli-

cations. Typical examples for application areas are preprocessing in semantic analysis

of documents (e.g., [88]), quantification in biomedical imaging (e.g., [119, 135]), and

visualization of anatomic structures (e.g., [56, 145]).

Following the argumentation in [180, §10], the main goal of determining a compact and

summarizing representation of image data can be further subdivided into the follow-

ing two categories. First, segmentation can be performed as preprocessing step to

simplify subsequent analysis steps in computer vision. This can alleviate the influence

of physical noise on images and create initial conditions for methods which are very

dependent on the image region they are applied on, e.g., mimic analysis on facial ex-

pressions as proposed in [156]. In general, this objective can be described as low-level

computer vision task, since one processes images without giving any interpretation to

the segmented regions.

Possible applications can range from simple binarization by thresholding [148], to the ex-

traction of an object-of-interest using saliency maps [2], to the segmentation of vessel-like

structures in volumetric medical imaging data [56]. In all these applications segmen-

tation is performed before further processing of the image data. In particular, in the

context of medical image analysis the delineation of anatomical structures, e.g., the

endocardial border of the left ventricle, enables automatic assessment of medical param-

eters used for diagnosis purposes. We discuss the latter application in more detail in

Section 4.1.3.

The second task of segmentation is to perform a change of representation. Image

pixels are assembled to form local regions, which themselves can be grouped to form

higher-level units, e.g., semantic objects. These semantic objects can be used for scene

interpretation and image understanding. Naturally, this objective is categorized as high-

level computer vision task, since a-priori knowledge for data interpretation is needed.

Typical applications include tracking of pedestrians [140], interpretation of aerial im-

ages [203], and atlas-based segmentation of anatomical structures [82]. We focus on

the task of high-level segmentation in Section 5 and discuss how to incorporate a-priori

knowledge in terms of a shape prior.
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4.1.2 How to segment images?

There are various ways to perform segmentation, reaching from simple thresholding algo-

rithms, to mathematical models given by variational formulations and partial di↵erential

equations, to model-based methods incorporating a-priori knowledge about shapes. As

a rule of thumb, one could state: the more complex the given data is, the more mathe-

matical modeling and computational e↵ort is needed to obtain satisfying segmentation

results. However, all approaches share common requirements for the segmentation re-

sult, independent of the level of incorporated knowledge. In general, one wants to obtain

a partition of the image domain into pairwise disjoint regions, which can be expressed

mathematically as in the following.

Let ⌦ ⇢ Rn be the image domain of a given image f which has to be segmented. Note

that two- and three-dimensional data is common in literature, i.e., n 2 {2, 3}. The

segmentation problem now consists in separation of the image domain ⌦ into an optimal

partition Pm(⌦) of pairwise disjoint regions ⌦i, i = 1, . . . ,m, i.e.,

Pm(⌦) 2
⇢

(⌦1, . . . ,⌦m) : ⌦ =
m
[

i=1

⌦i and ⌦i \ ⌦j = ; for all i 6= j

�

. (4.1)

Depending on the application, the specific order of the subregions ⌦i in (4.1) can be

important, e.g., for labeling problems in semantic image analysis [180, §10.2.2], or is

rather insignificant for further processing steps, e.g., for preprocessing of data.

Within this thesis we are interested in two-phase segmentation problems, i.e., the case

m = 2 in (4.1). In general, these problems require a partition P2(⌦) of the image domain

according to a background region ⌦1 ⇢ ⌦ and an object-of-interest ⌦2 ⇢ ⌦. Since both

regions can easily be relabeled during the process of segmentation in this simple task,

we disregard their specific order in the following and focus on determining a partition

P2(⌦) which accurately represents the information contained in the image f .

According to [180, §10.1] the following properties are preferable for any segmentation to

be determined.

• Subregions ⌦1, . . . ,⌦m, induced by the partition Pm(⌦), should be homogeneous

with respect to a certain homogeneity criterion, e.g., gray-level or texture.

• Adjacent subregions of the partition Pm(⌦) should be discriminable according to

the homogeneity criterion used for segmentation.

• The subregion interiors ⌦̊1, . . . , ⌦̊m should have a simple geometry without holes or

gaps. Boundaries of the subregions @⌦1, . . . , @⌦m should be smooth and accurate

with respect to the homogeneity criterion.
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Segmentation

pixel-based model-based
...

Background Subtraction
Clustering
Histogram analysis
Thresholding
...

region-based
...

Active contours
Level set methods
Split & Merge
Watershed algorithm
...

Active shapes
Atlas-based methods
Hough transform
Shape priors
...

Fig. 4.1. Overview of di↵erent segmentation algorithms.

Figure 4.1 gives an overview of popular methods from computer vision and mathematical

image processing. As illustrated, it is reasonable to categorize these methods by means of

their respective level of representation, i.e., pixel-based, region-based, and model-based

segmentation methods. We discuss these three categories in more detail in the following.

Pixel-based methods

Pixel-based methods obviously perform segmentation pixel-wise. In this context, the

determination of an optimal partition P2(⌦) is also known as binarization problem. The

decision, if a pixel belongs to ⌦1 or ⌦2, is performed under global criterion without

consideration of local information from the neighborhood of a pixel. Typical representa-

tives are thresholding methods, background subtraction methods, and simple clustering

methods. These approaches are in general easy to implement and can perform image

segmentation in real-time due to their relatively low complexity. In general, pixel-based

methods are applied for tasks which have strict temporal constraints, e.g., video surveil-

lance systems and quality control systems in industry. Additionally, these methods are

also often used as preprocessing step to identify salient regions in an image and then use

more sophisticated methods for image analysis.

Despite their low computational complexity, it is known that these approaches are not

suitable for demanding segmentation tasks, e.g., segmentation of the left ventricle in

echocardiographic examinations, due to the lack of spatial information. For this reason,

we have only little interest in these methods within this thesis. For an introduction

to pixel-wise segmentation approaches we refer to [70, §14.3f.], [184, §6.1], and [180,

§10.1.1]. A recent evaluation of background subtraction methods can be found in [25].
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Region-based methods

Region-based methods assemble pixels to higher-order units and incorporate spatial in-

formation about the geometry of these regions. Algorithms that are relatively easy to

realize include split&merge methods and the popular watershed algorithm. For a intro-

duction to these rather uncomplicated region-based approaches we refer to [184, §6.3].
More sophisticated methods utilize sophisticated mathematical relationships, such as ac-

tive contours or level set methods.

Since we are interested in variational models, we give a short overview of important

works in this field. One of the most significant contributions in this field is the seminal

work by Kass, Witkin, and Terzopoulos in [112], which introduced the concept of active

contours also known as snakes. Basically, these snakes are controlled continuity splines

which can move dynamically in the image domain according to internal image forces and

external constraint forces. Although this spline is not necessarily a closed curve in [112],

it can be used for segmentation tasks by minimizing a variational energy functional and

thus pulling the snake towards image contours.

Another popular segmentation model has been proposed shortly after the latter ap-

proach by Mumford and Shah in [139]. The authors propose a variational model for

segmentation of image regions ⌦1, . . . ,⌦m ⇢ ⌦ by a closed set �, representing the seg-

mentation contours and simultaneously estimating piece-wise smooth approximations of

these regions (cf. Section 4.2.1). The segmentation contours are given by the closed set,

� =
m
[

i=1

@⌦i \ @⌦ . (4.2)

Note that both the segmentation contour �, as well as the active contours in [112] have

to be parameterized, which leads to complicated numerical realizations and high com-

putational e↵ort during minimization of the associated energy functionals [146, §1.3].
Simultaneously, another fundamental paradigm for segmentation has been proposed by

the pioneer work on propagating fronts by Osher and Sethian in [147]. The advantage

of their approach is the implicit representation of a dynamic front, e.g., a segmenta-

tion contour, by level sets. This implicit representation overcomes the complications of

parametrized segmentation contours indicated above (cf. Section 4.4.1).

In the last two decades the three fundamental paradigms discussed above have been

extensively investigated and improved. Some of the most important contributions in

this field are enumerated in the following. The active contour model in [112] has been

notably extended by Caselles, Kimmel, and Sapiro in [29], introducing geodesic active

contours. The authors propose to compute minimal distance curves in a Riemannian
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space, depending on the image content, to improve previous curve evolution models.

Their method is realized by level set methods in order to overcome the problems of

topological changes when segmenting a unknown number of separate objects in an im-

age.

The well-known Chan-Vese method has been proposed by the same-named authors in

[33] as a special case of the Mumford-Shah segmentation model for piece-wise constant

approximations. Their approach is known as one of the first purely region-based vari-

ational segmentation formulations and is also realized using level set methods. The

original two-phase model has been extended to multiphase problems (i.e., m > 2 in

(4.1)) by the same authors in [206]. We discuss the Chan-Vese segmentation method in

more detail in Section 4.2.2.

Recently, Chan, Esedoglu, and Nikolova applied the concept of convex relaxation in

[32] for global optimization of a variety of nonconvex optimization problems arising in

computer vision and mathematical image processing. Thus, it gets possible to com-

pute global minimizers using convex minimization schemes. E.g., Brown, Chan, and

Bresson propose a completely convex formulation of the Chan-Vese method in [19]. We

investigate this relationship in Section 4.3.5.

We can further distinguish between edge-based [29, 112, 139] and region-based [32, 33,

206] segmentation methods. In this work we concentrate on the latter ones, since our

work is motivated by segmentation tasks in biomedical imaging, where we have to seg-

ment continuous objects-of-interest, which may not necessarily have sharp edges.

Model-based methods

The last category of segmentation methods covers model-based approaches, which incor-

porate a-priori knowledge about the object to be segmented. The problem of segmenting

parts of an image, e.g., lines or regions, with the help of models is also known as fitting

problem [180, §10.4].
One typical example for model-based methods is the Hough transform, which can be

used to find line segments or circles on edge-filtered images. For an introduction to the

Hough transform and possible extensions we refer to [70, §15.1] and [180, §10.3.4].
More sophisticated methods use a set of reference objects for training and are capable

of segmenting new objects which variate from the reference set to a certain extend. In

statistical shape analysis these variations can be modeled accurately, and variational

methods incorporate so-called shape priors to add these extra information to increase

the segmentation robustness in challenging applications. We discuss these high-level

segmentation methods in Section 5 in more detail.
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4.1.3 Segmentation in medical ultrasound imaging

Segmentation in medical ultrasound imaging plays a key role in computer aided diagno-

sis. In the field of echocardiography segmentation is used to assess medical parameters

of the cardiovascular system. The American Society of Echocardiography published

guidelines for (myocardial) chamber quantification in [119], which are used worldwide

as reference for the assessment of echocardiographic parameters. In particular, they

standardize measurements of morphology and function of the left ventricle in order to

reduce the significant inter-observer variability induced by visual inspection and quali-

tative estimations.

Information like left ventricular volume, ejection fraction, or septal wall thickness can be

calculated by delineating datasets from echocardiographic examinations of a patient’s

myocardium. Typically, these measurements are based on images generated from M-

mode or B-mode imaging (cf. Section 3.2) and are performed semi-automatically using

software solutions of the ultrasound imaging system or a corresponding workstation.

Due to the excellent temporal resolution of M-mode imaging, this modality can comple-

ment B-mode imaging especially for assessment of functional parameters, e.g., strain.

However, it is significantly more challenging to adjust the one-dimensional acoustic win-

dow within the volume of the left ventricle for optimal examination settings. Further-

more, the estimation of volumetric parameters from a one-dimensional measurement

bears certain risks of miscalculation, especially in pathological examination cases with

irregular anatomical structures [119], e.g., patients with ventricular hypertrophy.

Hence, two-dimensional B-mode imaging constitutes the base of most echocardiographic

imaging protocols. One possible way to compensate for shape distortions of the ventric-

ular chamber is to use the biplane Simpson’s method, i.e., combine the information from

an apical four-chamber view and an apical two-chamber view [119]. Figure 4.2 illus-

trates a typical measurement for estimation of the left ventricular volume by a manual

delineation of the endocardial border in both an apical four-chamber view (left) as well

as an apical two-chamber view (right) by an echocardiographic expert.

Examination protocols using modern 3D matrix transducers are on the verge of becom-

ing a new golden standard in the coming decade as they are capable of capturing the full

anatomy of the myocardium within a single acoustic window [105, 135]. However, this

technique is still not broadly available in daily clinical routine. For a review on novel

three-dimensional acquisition protocols and the respective advantages we refer to [105].

Note that manual delineations in three-dimensional volumes are hardly possible due to

the enormous e↵ort. This motivates the use of fully-automatic segmentation methods in

echocardiography.
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(a) End-diastolic phase in a2C-view (b) End-systolic phase in a2C-view

(c) End-diastolic phase in a4C-view (d) End-systolic phase in a4C-view

Fig. 4.2. Manual segmentation of the left ventricle by a medical expert. Top row:

delineation of lumen at workstation in apical two-chamber (a2C)-view. Bottom

row: delineation of lumen at imaging system in apical two-chamber (a4C)-view.

As a rule of thumb, one can summarize that the assessment of medical parameters gets

more robust with the increase of image information, i.e., the amount of acquired image

data. On the other hand, acquisition of additional data is time-consuming and hence

there is a natural trade-o↵ between the value of additional information and time-e↵ort.

For this reason optimized imaging protocols standardize data acquisition to maximize

the benefit for both physicians and patients in clinical treatment [119].

Most echocardiographic parameters can be estimated by using specialized formulas,

which are designed to fit the majority of examination cases based on accumulated data

of the normal population, e.g., the modified Simpson’s rule for assessment of the ventric-

ular volume [119]. Note that certain formulas use cubic polynomials for the estimation

of volumetric parameters. Even slight deviations during the delineation of anatomical

structures can lead to magnification of estimation errors. These small deviations even

occur, when two di↵erent physicians delineate the same structure-of-interest in medical

ultrasound images. This problem is known as inter-observer variability, and thus there is

a strong need for accurate and reproducible segmentation methods in echocardiography.
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Related work

Automatic segmentation of medical ultrasound data data is a hard task due to low

contrast, shadowing e↵ects, and speckle noise as discussed in Section 3.3. In order to

tackle these problems a huge variety of approaches has been proposed until today.

With respect to the typical segmentation tasks in echocardiography discussed above,

most authors in the literature assume two signal sources in medical ultrasound images:

reflecting tissue with high intensity values and a background signal with low intensities,

i.e., m = 2 in (4.1). This bimodal assumption is su�cient for most cases, e.g., for

the assessment of medical parameters as illustrated in Figure 4.2. Here, the object-of-

interest is the lumen of the left ventricle, which is segmented in the end-diastolic as well

as in the end-systolic phase. By simple subtraction of the segmented areas one obtains

the ejection fraction, which is an estimated measure for the theoretical pumping volume

of the examined myocardium.

In the following we give a short overview on recent works on ultrasound segmentation.

For an extensive review of methods in this field of research we refer to the work of Noble

and Boukerroui in [144].

Although edges are a popular feature for segmentation, their use in ultrasound imaging

is restricted. Multiplicative speckle noise induces wrong gradient information within

the image, which results in unwanted segmentation results. The few edge-based methods

for segmentation are based on phase-based feature detection, which uses concepts from

Fourier analysis to overcome the drawbacks of classical edge-based methods in presence

of multiplicative speckle noise. In [138] Mulet-Parada and Noble introduce a phase-based

measure for the detection of boundaries even in low-contrast regions. This measure is

incorporated into a spatio-temporal segmentation framework to guarantee continuity

over time. Belaid et al. present in [12] a di↵erent phase-based measure based on the so-

called monogenic signal, which uses the Riesz transform to describe a two-dimensional

signal analytically. The authors perform step edge detection using a feature asymmetry

measure and incorporate this measure into a level set segmentation method to delineate

the endocardial border of the left ventricle in presence of shadowing e↵ects.

For the reasons discussed above, most proposed segmentation methods in medical ul-

trasound imaging are region-based approaches. Most of these methods aim to model the

physical e↵ects perturbing regions in ultrasound images, to increase the robustness of

segmentation algorithms, e.g., in presence of multiplicative speckle noise. Recently, sev-

eral authors proposed to explicitly model multiplicative noise characteristics in medical

ultrasound images based on di↵erent assumed noise models, cf. [16, 90, 122, 170, 192]

and references therein. We discuss these approaches in the context of Bayesian modeling

in more detail in Section 4.3.2.



4.2 Classical variational segmentation models 63

4.2 Classical variational segmentation models

From the segmentation approaches summarized in Section 4.1.2, two variational seg-

mentation models have gained a huge popularity within the community of computer

vision and mathematical image processing. As the proposed methods in this thesis are

directly related to those models, we give an introduction to them in the following. In

Section 4.2.1 we discuss the classical Mumford-Shah segmentation model, which forms

the base for various recent segmentation algorithms. Furthermore, we mention a purely

region-based variant of the Mumford-Shah model, whose idea is adopted in Section 4.3.

Subsequently, we identify the popular Chan-Vese formulation as a special case of the

Mumford-Shah model for piecewise-constant approximations in Section 4.2.2.

4.2.1 Mumford-Shah model

Similar to the active contour model (cf. Section 4.1.2), Mumford and Shah suggest in

[139] to perform the segmentation task with the help of a segmentation contour which

partitions the image domain. The image domain ⌦ of an image f : ⌦! R is meant to be

divided according to (4.1) into pairwise disjoint subregions ⌦i ⇢ ⌦, i = 1, . . . ,m, which

have piecewise smooth boundaries separating them. The union of these boundaries is

denoted as the segmentation contour � ⇢ ⌦, as given in (4.2). Note that the number of

regions is not explicitly modeled in [139], but is rather induced implicitly by �.

The idea of the Mumford-Shah approach is to model the image intensities as values

of a piecewise-smooth function u : ⌦ ! R. In particular, it enforces the segmentation

contour � to partition the image domain ⌦ in a way, such that the approximation u to

f is smooth within each subregion ⌦i ⇢ ⌦, i = 1, . . . ,m. Discontinuities are allowed at

the border of these subregions, i.e., at the location of the segmentation contour �. The

variational Mumford-Shah segmentation model is given by,

EMS(u,�) =

Z

⌦

(u � f)2 d~x + µ

Z

⌦/�

|ru|2 d~x + � |�| . (4.3)

The L2 data fidelity term requires the approximation u to be close to the given data f

on the whole image domain ⌦. As we show in Section 4.3.3 this data fidelity term is

optimal in the presence of additive Gaussian noise. The second term in (4.3) induces aH1

seminorm regularization on ⌦/�, for which the regularization parameter µ > 0 enforces

the smoothness of the approximation u within each region ⌦i ⇢ ⌦, i = 1, . . . ,m. The

last term can be interpreted as one-dimensional Hausdor↵-measure, which penalizes the

length of the segmentation contour � by the regularization parameter � � 0.
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Segmentation of the image f can be performed by solving the minimization problem,

inf
�

EMS(u,�) | u 2 H1(⌦), � ⇢ ⌦ closed
 

. (4.4)

The existence of minimizers for (4.4) is proven by Dal Maso, Morel, and Solimni in [48],

using the direct method of calculus of variations from Section 2.3.

As the authors in [139] show, for a fixed contour � and µ ! +1 the solution û of (4.4)

converges to a piecewise-constant limit, i.e., û(~x) = ci for ~x 2 ⌦i, i = 1, . . . ,m. This

special case is discussed in more detail for the Chan-Vese model in Section 4.2.2.

Ambrosio-Tortorelli model

Ambrosio and Tortorelli link the Mumford-Shah functional in (4.3) to an elliptic func-

tional known as the Ambrosio-Tortorelli model in [7]. Although the Ambrosio-Tortorelli

segmentation formulation can be categorized as an edge-based approach, the authors

show that both variational models are closely related. In particular, the authors in [7]

show that a sequence of approximating elliptical functionals,

Eh(u, z) =

Z

⌦

�

1 � z2
�2h �|ru|2 + |rz|2

�

+
1

4
↵2h2z2 d~x + �

Z

⌦

|f � u|2 d~x ,

converge to the Mumford-Shah model in (4.3), i.e., Eh ! EMS for h ! +1. Here,

z : ⌦! [0, 1] is a continuous approximation of the segmentation contour �, which takes

high values in the presence of discontinuities. The term ’convergence’ for functionals

is also known as De Giorgi �-convergence (not to be confused with the segmentation

contour � ⇢ ⌦). For an introduction to the concept of �-convergence we refer to [47].

E�cient region-based Mumford-Shah model

Recently, Wirtz proposed an e�cient region-based Mumford-Shah (ERBMS) variant in

[220, §4.4.4]. Inspired by the popular Chan-Vese model in Section 4.2.2, this formulation

overcomes some of the drawbacks of the traditional model in (4.3). In particular, it

avoids the Helmholtz-like optimality conditions at the boundaries of each subregion

⌦i ⇢ ⌦, i = 1, . . . ,m, which occur when solving the minimization problem (4.4). These

boundary conditions often lead to numerical problems when discretized [220].

The main idea of this approach is to expand the H1 seminorm regularization in (4.3)

to the whole image domain ⌦. In order to preserve discontinuities at the location of

the segmentation contour � ⇢ ⌦, u is represented as sum of globally smooth functions

ui 2 H1(⌦), i = 1, . . . ,m, which are only considered in their respective subregion ⌦i.
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Thus, the approximation u can be expressed with the help of indicator functions as,

u =
m
X

i=1

�iui with �i(~x) =

8

<

:

1 , for ~x 2 ⌦i

0 , else
(4.5)

Using this idea, the traditional Mumford-Shah model can be reformulated in the case of

a two-phase segmentation problem, i.e., m = 2, to the ERBMS model as,

EERBMS(u1, u2,�) =

Z

⌦

� (f � u1)
2 d~x + µ1

Z

⌦

|ru1|2 d~x

+

Z

⌦

(1� �) (f � u2)
2 d~x + µ2

Z

⌦

|ru2|2 d~x + �|�| .
(4.6)

As gets clear from (4.6), one does not have to take care for the boundary conditions

on � ⇢ ⌦ during minimization, but only at the border of the image domain @⌦. Fur-

thermore, the smoothness of the approximation u can be adjusted for each subregion

individually. The ERBMS formulation is used in the context of a generalized variational

segmentation framework incorporating physical noise models in Section 4.3.

4.2.2 Chan-Vese model

The popular Chan-Vese segmentation model has been proposed in [33] as a special case of

the Mumford-Shah energy functional (4.3) for piecewise constant functions, i.e., ui = ci

constant on each connected subregion ⌦i ⇢ ⌦, i = 1, . . . ,m, of the partition Pm(⌦) in

(4.1). As the title ’Active Contours Without Edges’ suggests, this segmentation model is

purely region-based. The energy functional for a two-phase segmentation problem, e.g.,

object-of-interest and background region, is given by,

ECV (c1, c2,�) =

�1

Z

⌦1

(c1 � f)2 d~x + �2

Z

⌦2

(c2 � f)2 d~x + �Hn�1(�) + �

Z

⌦1

d~x .
(4.7)

The first two terms of ECV in (4.7) can be interpreted as L2 data fidelity terms, which ask

for optimal constants c1, c2 2 R minimizing the quadratic distance to the given image

f . The term Hn�1(�) is the (n � 1)-dimensional Haussdor↵ measure and penalizes the

length of the segmentation contour � using � as regularization parameter. The last

term measures the area of ⌦1 with � as respective weighting parameter. Note that the

last term is usually disregarded in the literature (in particular by the authors of [33]

themselves) for common segmentation tasks, i.e., formally � = 0 in (4.7).
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Segmentation is performed by solving the associated minimization problem,

inf {ECV (c1, c2,�) | ci constant, � ⇢ ⌦ closed } . (4.8)

Naturally, it is not possible to find an optimal triple (ĉ1, ĉ2, �̂) of (4.8) by minimizing

ECV in all variables simultaneously. Hence, the authors in [33] propose an alternating

minimization scheme (see Section 4.5.1 for details) in order to decouple the minimization

of the optimal constants c1, c2 and the segmentation contour �. As we show in Section

4.3.4, for a fixed � the energy functional ECV in (4.7) is minimized with respect to c1

and c2, if these constant functions are the mean values of the respective regions ⌦1 and

⌦2 (see also [139]), i.e, they can be computed as,

ci =
1

|⌦i|

Z

⌦
i

f(~x) d~x , i = 1, 2 . (4.9)

Furthermore, minimization of ECV in � for fixed constants c1 and c2 is known as the

minimal surfaces problem for which numerous mathematical results exist, cf. [45, §5]
and references therein.

The introduction of indicator functions for the subregions ⌦i, combined with an alterna-

tive formulation of the Chan-Vese energy functional in (4.7) which is based on level set

methods, makes it possible to overcome numerical problems when tracking the segmen-

tation contour � explicitly. The Chan-Vese method has been extended to multiphase

segmentation problems, i.e., m > 2 in (4.1), by the same authors in [206]. Furthermore,

Wang et al. propose a local variant of the Chan-Vese model to tackle the problems of

intensity inhomogeneities in [212]. Finally, Brown, Chan, and Bresson propose in [19] a

completely convex formulation of the Chan-Vese functional using convex relaxation.

After an introduction to level set methods in Section 4.4, we discuss possible draw-

backs of the Chan-Vese model in Section 4.5.1. Furthermore, we describe the numerical

realization of the Chan-Vese segmentation algorithm in detail.
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4.3 Variational segmentation framework for

region-based segmentation

In this section we propose a purely region-based variational segmentation framework,

which generalizes the e�cient region-based Mumford-Shah (ERBMS) model from Sec-

tion 4.2.1 and allows the incorporation of di↵erent physical noise models. In particular,

we evaluate the additive Gaussian noise model, the Loupas noise model, and the Rayleigh

noise model from Section 3.3.1 for segmentation of medical ultrasound imaging.

This framework allows a flexible incorporation of di↵erent noise models occurring in

medical imaging and a-priori knowledge about the subregions to be segmented using

statistical (Bayesian) modeling. In contrast to comparable segmentation approaches,

this method allows for the modeling of fore- and background signal separately. Further-

more, it uses recent results from global convex segmentation to perform minimization of

the corresponding energy functional and hence overcomes several drawbacks of methods

based on level sets and signed distance functions, e.g., [16, 33, 42].

Note that the proposed framework has already been extensively investigated for three

di↵erent noise models and three regularization terms in our work in [173] and thus we

focus in this section on the most important parts of this framework and its extension by

the Rayleigh noise model as given in our work in [197].

First, we give a motivation for the investigation of di↵erent noise models for ultrasound

imaging in Section 4.3.1 and summarize typical assumptions on di↵erent noise models in

the literature. We formulate the segmentation task by means of statistical modeling in

Section 4.3.2. Subsequently, we deduce a maximum a-posteriori estimation by applying

Bayes’ theorem, which results in our general variational segmentation model. The incor-

poration of noise models in terms of data fidelity terms is discussed in detail in Section

4.3.3. We focus on the computation of optimal constants in Section 4.3.4, and give ad-

ditional possibilities for appropriate regularization terms. The numerical realization of

the proposed segmentation framework is given in Section 4.3.5 and we describe how to

implement the corresponding optimization schemes e�ciently. In particular, we apply

results from convex relaxation to obtain global optima for the segmentation step of our

implementation. In Section 4.3.7 we evaluate the three di↵erent noise models indicated

above qualitatively and quantitatively on both synthetic as well as real patient data

from echocardiographic examinations. Finally, we discuss some observed drawbacks of

the numerical realization in the case of the two multiplicative noise models, i.e., Loupas

and Rayleigh noise, and show some preliminary results for total variation denoising in

Section 4.3.8.
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4.3.1 Motivation

Despite its high level of awareness in the segmentation community, the Mumford-Shah

formulation in Section 4.2.1 has not yet been investigated in a more general context

of physical noise modeling. This is a crucial part in image denoising, since the image

noise naturally has to be covered by the denoising method in order to produce satisfying

results. Some exemplary literature on image denoising based on statistical methods can

be found in [8, 110, 117, 167]. Furthermore, only few publications considered the e↵ect

of a specific noise model on the results of image segmentation [36, 137]. Since the field

of applications for automated image segmentation grows steadily, a lot of segmentation

problems need a suitable noise model, e.g., synthetic aperture radar, positron emission

tomography or medical ultrasound imaging. Especially for data with poor statistics, i.e.,

with a low signal-to-noise ratio, it is important to consider the impact of the present

noise model in the process of segmentation as we will show in later sections.

It is widely-accepted that speckle noise in medical ultrasound data is of multiplicative

nature as discussed in Section 3.3.1. However, it is not clear which noise model in the

literature is most appropriate for certain segmentation tasks [16]. A typical assumption

on the intensity distribution in ultrasound segmentation is the Rayleigh noise model,

e.g., in [16, 90, 122, 170]. However, the validity of this assumption is questionable for

log-compressed medical ultrasound images in daily clinical routine as Tao et al. indicated

in their evaluation study in [192]. In the field of ultrasound denoising, the Loupas noise

model gained attention recently [110, 117, 167]. To the best of our knowledge this model

has not been investigated in the context of medical ultrasound segmentation yet.

The contribution of this work is to investigate the impact of both the Rayleigh as well as

the Loupas noise model on the results of medical ultrasound imaging and compare them

to the classical noise model from computer vision, i.e., the additive Gaussian noise model.

We evaluate the gain in robustness and segmentation accuracy qualitatively as well as

quantitatively on synthetic and real patient data from echocardiographic examinations.

4.3.2 Proposed variational region-based segmentation framework

The main idea of our region-based segmentation framework is based on the fact that a

wide range of noise types is present in real-life applications, particularly including noise

models that are fundamentally di↵erent from additive Gaussian noise. To formulate a

segmentation framework for di↵erent noise models and thus for a large set of imaging

modalities, we use tools from statistics. First, we introduce some preliminary definitions

to describe our model accurately.
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Let ⌦ ⇢ Rn be the image domain (we consider the typical cases n 2 {2, 3}) and let f

be the given (noisy) image we want to segment. The segmentation problem consists in

separation of the image domain ⌦ into an optimal partition Pm(⌦) of pairwise disjoint

regions ⌦i, i = 1, . . . ,m as given in (4.1). Naturally, the partition Pm(⌦) is meant to be

done with respect to the given image information induced by f , e.g., separation into an

object-of-interest and background for m = 2.

In many cases one is not only interested in the partition Pm(⌦) of the image domain,

but also in the simultaneous restoration of the given data f as an approximation of the

original noise free image. For this purpose we follow the idea of the ERBMS model in

Section 4.2.1 and compute a smooth function ui for each subregion ⌦i, i = 1, . . . ,m of

Pm(⌦), where the smoothness of ui is not only enforced in ⌦i, but on the entire image

domain ⌦. Thus an approximation u of the noise free image can be written as in (4.5),

u = �1u1 + · · · + �mum ,

where �i denotes the indicator function of ⌦i, and ui is a global smooth function induced

by ⌦i and the given data f , i.e.,

ui =̂

8

<

:

restoration of f in ⌦i ,

appropriate extension in ⌦ \ ⌦i .
(4.10)

Bayesian modeling for region-based segmentation

As discussed in Section 4.1.3, many region-based segmentation approaches for medical

ultrasound imaging perform segmentation with the help of probabilistic methods, which

formulate image segmentation as a Bayesian inference problem, e.g., [16, 90, 122, 170].

Here, image intensities are modeled as random variables and one tries to maximize the

probability of a partition of the image domain given the observed random variables in-

duced by the image. This idea has been pioneered in the context of active contours

by Zhu and Yuille in [229]. For an introduction to probabilistic segmentation methods

based on Bayesian modeling we refer to [70, §16].

In order to give precise statements on probability densities we use a discrete formulation

with N denoting the number of pixels (or voxels) and expressing the dependency on

N by a superscript in the functions (to be interpreted as piecewise constant on pixels

and identified with the finite-dimensional vector of coe�cients in a suitable basis) and

partitions (any subdomain ⌦i ⇢ ⌦ restricted to be a union of a finite number of pixels).

As a last step, we consider the formal limit N ! 1 to obtain our variational model.
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Since this serves as a motivation only, we refrain to discuss the challenging problem of

analyzing the continuum limit. Note that in the case of hierarchical Bayesian priors re-

lated to the standard Mumford-Shah model, this has been already carried out by Helin

and Lassas in [95].

In the following we deduce the proposed general region-based segmentation framework

from the viewpoint of statistical (Bayesian) modeling. Following [43, 122, 153] the par-

tition PN
m (⌦) of the image domain ⌦ can be computed via a maximum a-posteriori

probability (MAP) estimation, i.e., by maximizing the a-posteriori probability density

p(PN
m (⌦) | fN) using Bayes’ theorem. However, since we also want to restore an approxi-

mation u of the original noise free image, we maximize a modified a-posteriori probability

density,

p(uN ,PN
m (⌦) | fN) / p(PN

m (⌦)) p(uN | PN
m (⌦)) p(fN | uN ,PN

m (⌦)) . (4.11)

The main advantage of this formulation is the possibility to separate geometric properties

of the partition of ⌦ (first term) from image-based features (second and third term). In

addition, the densities on the right-hand side of (4.11) are often easier to model than

the a-posteriori probability density p(uN ,PN
m (⌦) | fN) itself. Note that the probability

densities p(PN
m (⌦)) and p(uN |PN

m (⌦)) allow to incorporate a-priori information into the

segmentation process with respect to the desired partition PN
m (⌦) and the restoration

uN .

In order to characterize the a-priori probability density p(PN
m (⌦)) for the geometric

term in (4.11), we consider a geometric prior which is most frequently used in segmen-

tation problems, e.g., for the Chan-Vese segmentation method in Section 4.2.2. This

prior provides a regularization constraint favoring smallness of the edge set � as given

in (4.2) in the (n� 1)-dimensional Hausdor↵ measure Hn�1, i.e.,

p(PN
m (⌦)) / e��Hn�1

N

(�N ) , � > 0 . (4.12)

Note that in order to avoid unwanted grid e↵ects, one should use an appropriate ap-

proximation Hn�1
N of the Hausdor↵ measure Hn�1 that also guarantees a correct limit

as N ! 1.

To characterize the two image-based densities p(uN | PN
m (⌦)) and p(fN | uN ,PN

m (⌦))

in (4.11), we assume that the functions uN
i in (4.5) are uncorrelated and independent

with respect to the partition PN
m (⌦). This is a valid assumption, since the segmentation

should exactly separate the parts with di↵erent behavior of uN . Due to the composition

of uN by functions uN
i and the pairwise disjoint partition of ⌦N by ⌦N

i , we obtain
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simplified expressions of the form,

p(uN | PN
m (⌦)) =

m
Y

i=1

p(uN
i |⌦N

i ) , (4.13a)

and

p(fN | uN ,PN
m (⌦)) =

m
Y

i=1

p(fN | uN
i ,⌦

N
i ) , (4.13b)

where p(uN
i | ⌦N

i ) and p(fN | uN
i ,⌦

N
i ) denote for a subregion ⌦N

i the probability of

observing an image uN
i and fN , respectively.

First, we discuss the densities p(uN
i |⌦N

i ) from (4.13a), which can be reduced to a-

priori probability density functions p(uN
i ). The most frequently used a-priori densities,

in analogy to statistical mechanics, are Gibbs functions [77, 78] of the form

p(uN
i ) / e�↵

i

RN

i

(uN

i

) , ↵i > 0 , (4.14)

where RN
i is a discretized version of a non-negative (and usually convex) energy func-

tional Ri. Using these a-priori densities, we can write (4.13a) as,

p(uN | PN
m (⌦)) /

m
Y

i=1

e�↵
i

RN

i

(uN

i

) . (4.15)

To characterize the densities p(fN | uN
i ,⌦

N
i ) in (4.13b), we assume that each value fN

|
Px

(with Px ⇢ ⌦N being a pixel) describes a realization of a random variable and all

random variables are pairwise independent and identically distributed within the same

corresponding subregion ⌦N
i . Consequently, it is possible to replace the probability

p(fN | uN
i ,⌦

N
i ) by a joint a-posteriori probability pi(fN | uN

i ) in ⌦
N
i , i.e., the expression

in (4.13b) reads as

p(fN | uN ,PN
m (⌦)) /

m
Y

i=1

Y

Px⇢⌦N

i

pi(f
N

|
Px

| uN
i |

Px

) . (4.16)

On can think of the probability in (4.16) as the likelihood for observing the N random

events of fN under the unknown conditions given by the approximation uN . Naturally,

one wants to maximize this likelihood with respect to the uN to determine a good

estimation from a statistical point of view. For more details on likelihood functions we

refer to [86].

As mentioned above, we use a MAP estimator to determine an approximation of the un-

known image u and a partition of the image domain Pm(⌦). Thus, we have to maximize
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the modified a-posteriori probability (4.11), respectively minimize its negative logarithm,

i.e.,

(uN ,PN
m (⌦))MAP 2

argmin
uN ,PN

m

(⌦)

�

� log p(fN | uN ,PN
m (⌦)) � log p(uN | PN

m (⌦)) � log p(PN
m (⌦))

 

.

By inserting the a-priori densities (4.12) and (4.15) for the geometric prior and image

terms, respectively, as well as the region-based image term (4.16), we consequently

minimize the following energy functional,

EN(uN
1 , . . . , u

N
m, ⌦

N
1 , . . . ,⌦

N
m) =

m
X

i=1

X

Px⇢⌦N

i

� log pi(f
N

|
Px

| uN
i |

Px

) +
m
X

i=1

↵iR
N
i (u

N
i ) + �Hn�1

N (�N) .
(4.17)

We already stated above that a suitable selection of probability densities pi(fN | uN
i )

depends on the underlying physical noise model in the given data fN and the subregion

⌦N
i . We present the corresponding form of pi(fN | uN

i ) for the cases of additive Gaussian,

Loupas, and Rayleigh noise in Section 4.3.3.

The variational problem (4.17) for the MAP estimate has a formal continuum limit

(with ↵i and � rescaled by the pixel volume), which we shall consider as the basis of our

variational framework in the following:

E(u1, . . . , um,⌦1, . . . ,⌦m) =
m
X

i=1

✓

Z

⌦
i

� log pi(f | ui) d~x + ↵iRi(ui) + �Hn�1(�)

◆

.
(4.18)

Finally, we add that in the context of inverse problems the functionals Ri in (4.18) and

the in the Gibbs a-priori density (4.14) are related to regularization functionals, whereas

the resulting functionals
R

⌦
i

� log pi(f | ui) d~x are related to data fidelity terms for each

subregion ⌦i.

The main advantage of the proposed region-based segmentation framework (4.18) is

the ability to handle the information, i.e., the occurring type of noise and the desired

smoothness conditions, in each subregion ⌦i of the image domain ⌦ separately. For

example, it is possible to choose di↵erent smoothing functionals Ri, if subregions of

di↵erent characteristics are expected. Moreover, the proposed framework is a direct

generalization of the Chan-Vese segmentation model and the region-based version of the

Mumford-Shah segmentation model to non-Gaussian noise problems, which is discussed

in detail in Section 4.3.4.
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Two-phase variational segmentation formulation

With respect to the typical segmentation tasks in medical ultrasound imaging discussed

in Section 4.1.3, we assume a two-phase segmentation problem (i.e., m = 2 in (4.18)).

This is reasonable, since we are interested in segmenting objects in a complex back-

ground, e.g., the left ventricle of the human myocardium. Furthermore, this enables us

to extensively employ methods from convex relaxation for the numerical realization in

Section 4.3.5. An extension to multiphase problems can be performed with the same

challenges as in the case of the standard Chan-Vese model, e.g., see [206].

First, we assume that we want to segment the image domain ⌦ by a partition P2(⌦)

in (4.1) into a background region and an object-of-interest, which we denote in this

context with ⌦1 and ⌦2, respectively. Consequently, we introduce an indicator function

� in order to represent both subregions, such that

�(~x) =

8

<

:

1 , if ~x 2 ⌦1 ,

0 , else .
(4.19)

The negative log-likelihood functions � log pi(f | ui) in (4.18) are defined as data fidelity

terms using the notation,

Di(f, ui) = � log pi(f | ui) for i 2 {1, 2} . (4.20)

Finally, we use the well-known relation between the (n� 1)-dimensional Hausdor↵ mea-

sure and the total variation of an indicator function (see e.g., [6, §3.3]), which implies

Hn�1(�) = |�|BV (⌦) =

Z

⌦

|r�(~x)|`r d~x .

Here, � ⇢ ⌦ is the edge set of the partition P2(⌦) = (⌦1,⌦2), � is defined in (4.19), and

| · |BV (⌦) denotes the total variation of a function in ⌦.

Thus, we can reformulate (4.18) for the case of a two-phase segmentation problem as,

E(u1, u2,�) =

Z

⌦

�(~x)D1(f, u1) + (1 � �(~x))D2(f, u2) d~x

+ ↵1R1(u1) + ↵2R2(u2) + �|�|BV (⌦) .

(4.21)

The data fidelity termsD1 andD2 are negative log-likelihood functions, which are chosen

according to the assumed noise model for the given image f , as we discuss in Section

4.3.3. The regularization terms R1 and R2 are used to incorporate a-priori knowledge

about the expected unbiased signals as described in Section 4.3.4.
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To perform segmentation according to the model in (4.21) we have to solve the following

minization problem,

inf {E(u1, u2,�) | ui 2 X, � 2 BV (⌦; {0, 1}) } , (4.22)

for which X denotes an appropriate subset of a Banach space of functions according to

the chosen data fidelity terms Di and regularization functionals Ri, i = 1, 2, in (4.21).

For the analysis of the optimization problem (4.22) in case of additive Gaussian and

Loupas noise, and a proof for the existence of respective minimizers using the direct

method of calculus of variations (cf. Section 2.3) we refer to our work in [173, §3].

4.3.3 Physical noise modeling

As mentioned above, the choice of the probability densities Di(f, ui) = pi(f | ui) for

i = 1, 2, in (4.21) solely depends on the image formation process and hence on the

assumed noise model for the image f and the subregion ⌦i. Typically, one assumes

probability densities pi(f | ui) which belong to the exponential family [36, 122, 137], e.g.,

Gaussian, Exponential, Poisson, and Rayleigh distributions.

Following [122], the family of distributions of a random variable f (e.g., a pixel in the ob-

served image) is said to be a canonical exponential family, if there exists a k-dimensional

parameter vector ~✓ 2 Rk, a function A : Rk ! R, and functions h, T1, . . . , Tk : R ! R,
such that the corresponding probability density function can be written as,

p(f | ~✓) = h(f) eh
~✓,T (f) i�A(~✓) , (4.23)

where h(f) is the reference density, T = (T1, . . . , Tk)T is the natural su�cient statistic,

and ~✓ is the natural parameter vector.

In most cases it is (often implicitly) assumed that the image is perturbed by additive

Gaussian noise. However, there are many real-life applications in which di↵erent types of

noise occur, e.g., multiplicative noise models in medical ultrasound imaging as discussed

in Section 3.3.1. In this thesis we focus on the Loupas and Rayleigh noise model.

As one could observe in Section 3.3.1, the appearance of Loupas and Rayleigh noise

is in general stronger compared to additive Gaussian noise, especially in bright image

regions. Hence, an appropriate choice of probability densities is required to handle the

perturbation e↵ects of di↵erent noise models accurately. For the sake of simplicity and

since we are only interested in the formulation in (4.21), we use pi(f(~x) | ui(~x)) in the

following. However, this term has to be interpreted as the value of pixels in the sense of

the modeling in Section 4.3.2.
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Additive Gaussian noise model

One of the most commonly used noise models in computer vision and mathematical

image processing is the additive Gaussian noise model. From Section 3.3.1 we recall

that the image formation process for an observed image f is typically modeled as,

f = u + ⌘ , ⌘ ⇠ N (0, �2) ,

i.e., ⌘ is a normal-distributed random variable with expectation 0 and variance �2.

Clearly, this kind of noise is signal-independent and has a global noise distribution.

For this case the conditional probability pi(f(~x) | ui(~x)) in (4.16) is given by (cf. [137]),

pi(f(~x) | ui(~x)) =
1p
2⇡�

e�
1

2�2 (u
i

(~x)� f(~x))2 , i = 1, 2 .

Thus, this model leads to the following negative log-likelihood functions in the energy

functional E for i = 1, 2 in (4.21),

� log pi(f(~x) | ui(~x)) = log(
p
2⇡�) +

1

2�2
(ui(~x) � f(~x))2 .

Disregarding terms independent of ui, we can deduce the following data fidelity term for

additive Gaussian noise,

Di(f, ui) =
1

2�2
(ui(~x) � f(~x))2 , i = 1, 2 . (4.24)

Consequently, the additive Gaussian noise model induces the commonly used L2 data

fidelity term, which is the canonical choice of fidelity in many segmentation formulations,

e.g., in the Mumford-Shah or Chan-Vese model (see Section 4.2). Therefore, these

segmentation methods are successful on a large class of images, since additive Gaussian

noise is the most common form of noise in computer vision applications.

Finally, we mention that the unknown variance �2 in (4.24) is neglected in the following

for the additive Gaussian noise model, because it can be scaled by the regularization

parameters ↵i and � in the energy functional (4.21).

Loupas noise model

The following noise model is signal-dependent and using the notation from above the

image perturbation with multiplicative noise can be described by,

f = u + u
�

2 ⌘ , ⌘ ⇠ N (0, �2) .
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The fixed parameter � determines the signal-dependence of the noise variance and typical

values in the literature are � 2 {1, 2} as discussed in Section 3.3.1. Note that for � = 0

one obtains the case of additive Gaussian noise as already discussed above.

In the following we concentrate on the case of the Loupas noise model (� = 1), i.e., the

image formation process is given by

f = u +
p
u ⌘ ,

where ⌘ is given as above. Obviously, the induced noise model is signal-dependent and

perturbations on the image are amplified proportional to the image intensity. For this

case the conditional probability pi(f(~x) | ui(~x)) in (4.16) is given by

pi(f(~x) | ui(~x)) =
1

�
p

2⇡ui(~x)
e�

1
2�2

(u
i

(~x) � f(~x))2

u

i , i = 1, 2 .

This is a special case of the exponential family of distributions in (4.23), since we can

write the conditional probability as,

p(f | ~✓) = h(f) eh
~✓,T (f) i�A(~✓) , with

~✓ = (� 1

�2
,� 1

2�2u
) , h(f) = 1 , T (f) = (f, f 2)T , A(~✓) = � u

2�2
+

1

2
log

�

2⇡�2u
�

.

Thus, this noise model leads to the following negative log-likelihood functions in the

energy functional E for i = 1, 2 in (4.21),

� log pi(f(~x) | ui(~x)) = � log

 

1

�
p

2⇡ui(~x)
e�

1
2�2

(u
i

(~x) � f(~x))2

u

i

!

=
log ui(~x)

2
+ log(

p
2⇡�) +

(ui(~x) � f(~x))2

2�2 ui(~x)
.

Disregarding terms independent of ui, the Loupas noise model leads to the following

data fidelity term,

Di(f, ui) =
(ui(~x) � f(~x))2

2�2 ui(~x)
+

log ui(~x)

2
, i = 1, 2 . (4.25)

In contrast to the additive Gaussian noise model, we cannot simply rescale the regu-

larization parameters, such that the unknown variance �2 vanishes. Therefore, we have

to perform an estimation of this unknown parameter from the discrete image f later in

Section 4.3.5. Due to the multiplicative nature of the Loupas noise model we have to

deal with a more complicated data fidelity term in (4.25) and hence to more challenges

in the computation of minimizers in (4.21) compared to additive Gaussian noise.
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Rayleigh noise model

The last noise model we want to discuss is the Rayleigh noise model, which is the most

commonly assumed noise model in the literature when dealing with medical ultrasound

images as discussed in Section 3.3.1. We recall, that the assumed image formation

process di↵ers fundamentally from the latter two models and is given by,

f = u ⌫ ,

for which ⌫ 2 R�0 is a Rayleigh-distributed random variable with the probability density

function,

p�(⌫) =
⌫

�2
e�

⌫

2

2�2 , � > 0 .

To deduce the conditional probability pi(f(~x) | ui(~x)) we need the following lemma.

Lemma 4.3.1 (Conditional probability for multiplicative noise models). Let f be the

observation of a random variable described by the image formation process f = u ⌫.

Then the conditional probability for observing f given u is given by,

p(f | u) = p�

✓

f

u

◆

1

u
. (4.26)

Proof. [8, Proposition 3.1]

Using this relationship, one gets the following negative log-likelihood functions in the

energy functional E in (4.21),

� log pi(f(~x) | ui(~x)) = � log

✓

p�

✓

f(~x)

ui(~x)

◆

1

ui(~x)

◆

= � log

 

f(~x)

ui(~x) �2
e
� f

2(~x)

2�2
u

2
i

(~x)

!

+ log ui(~x)

=
f 2(~x)

2�2u2
i (~x)

� log

✓

f(~x)

�2 u2
i (~x)

◆

.

Thus, for the Rayleigh noise model we obtain the following data fidelity term,

Di(f, ui) =
1

2

✓

f(~x)

� ui(~x)

◆2

� log

✓

f(~x)

�2 u2
i (~x)

◆

, i = 1, 2 . (4.27)

As in the case of the Loupas noise model, we cannot rescale the regularization param-

eters, such that the unknown variance �2 vanishes. Therefore, we have to perform an

estimation of this unknown parameter from the given image f later in Section 4.3.5.
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4.3.4 Optimal piecewise constant approximation

In this section we discuss di↵erent convex regularization functionals Ri : X ! R[{+1}
that allow to incorporate a-priori information about possible solutions in an appropriate

Banach space X into the proposed segmentation framework in (4.21).

Since numerical experiments with all possible combinations of data fidelity terms from

Section 4.3.3 and the proposed regularization functionals is not feasible within the scope

of this thesis, we focus on optimal piecewise constant approximations, i.e., we investi-

gate solutions which minimize the proposed segmentation model with the regularization

functionals,

Ri(ui) =

8

<

:

0 , if |rui| = 0 ,

1 , else ,
i = 1, 2 . (4.28)

Restricting possible solutions to be piecewise constant induces a natural extension of

the Chan-Vese segmentation model from Section 4.2.2 to non-Gaussian noise models

described in Section 4.3.3. To perform this extension it su�ces to exchange the L2 data

fidelity terms in (4.7) by general negative log-likelihood functions � log pi(f |ci), such
that one obtains a generalized Chan-Vese formulation by,

ECV ⇤(c1, c2,�) =

Z

⌦1

� log p1(f | c1) d~x +

Z

⌦2

� log p2(f | c2) d~x + �Hn�1(�) . (4.29)

As on can clearly see, this energy functional corresponds to the proposed region-based

segmentation framework (4.21) using the regularization functionals Ri defined in (4.28)

to enforce constant solutions c1 and c2. Actually, these optimal constants can be com-

puted explicitly using the form of the negative log-likelihood functions, by solving the

following minimization problem,

ĉi = argmin
c
i

constant

⇢

Z

⌦
i

Di(f, ci) d~x

�

, i = 1, 2 . (4.30)

For a fixed partition of ⌦ induced by the segmentation contour � we give the optimal

piecewise constants for the three investigated noise models in the following.

First, in the case of additive Gaussian noise in (4.24) and i = 1, 2, we have to discuss

the case,

Z

⌦
i

Di(f, ci) d~x =

Z

⌦
i

(ci � f(~x))2 d~x =

Z

⌦
i

c2i � 2f(~x)ci + f 2(~x) d~x
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To deduce optimal constants, we investigate the necessary condition for a minimum, i.e.,

0 =

Z

⌦
i

2 ci � 2 f(~x) d~x )
Z

⌦
i

ci d~x =

Z

⌦
i

f(~x) d~x

c
i

constant) ci

Z

⌦
i

d~x

| {z }

=|⌦
i

|

=

Z

⌦
i

f(~x) d~x

Hence, we can compute the optimal constants for additive Gaussian noise as,

ĉi =
1

|⌦i|

Z

⌦
i

f(~x) d~x , i = 1, 2 . (4.31)

Obviously, the optimal constants are determined by themean intensities in the respective

regions ⌦i ⇢ ⌦, i = 1, 2, as already indicated by Mumford and Shah in [139], or Chan

and Vese in [33]. Hence, using the optimal piecewise constant approximation in (4.31),

it gets obvious that the classical Chan-Vese segmentation model (4.7) is a special case of

the proposed segmentation framework in (4.21) for choosing the functions � log pi(f |ui)

as L2 data fidelity terms.

For the Loupas noise model in (4.25) and i = 1, 2, we get,

Z

⌦
i

Di(f, ci) d~x =

Z

⌦
i

(ci � f(~x))2

2�2 ci
+

log ci
2

d~x =
1

2

Z

⌦
i

ci � 2f(~x) +
f 2(~x)

ci
+ log ci d~x

To deduce the optimal constants we use the quadratic formula (q.f.), i.e.,

0 =

Z

⌦
i

c2i + �2 ci + f 2(~x) d~x ) c2i |⌦i| + ci |⌦i|�2 +

Z

⌦
i

f 2(~x) d~x

q.f.) ci = ��2

2
±

s

�4

4
+

1

|⌦i|

Z

⌦
i

f 2(~x) d~x .

Using the positive solution of the quadratic formula we get for the Loupas noise model

in (4.25),

ĉi =
1

2

0

@

s

�4 +
4
R

⌦
i

f 2(~x) d~x

|⌦i|
� �2

1

A , i = 1, 2 . (4.32)

Finally, we discuss the case of the Rayleigh noise model in (4.27) and i = 1, 2,

Z

⌦
i

Di(f, ci) d~x =

Z

⌦
i

1

2

✓

f(~x)

� ci

◆2

� log

✓

f(~x)

�2 c2i

◆

d~x

=

Z

⌦
i

f 2(~x)

2�2 c2i
� log

✓

f(~x)

�2

◆

+ 2 log ci d~x .
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To deduce optimal constants, we investigate the necessary condition for a minimum, i.e.,

0 =

Z

⌦
i

2 c2i � f 2(~x)

�2c3i
d~x )

Z

⌦
i

c2i d~x =
1

2�2

Z

⌦
i

f(~x) d~x

Restricting ourselves to the positive square root, we get the following optimal constant

for the Rayleigh noise model (see also [122]),

ĉi =

s

1

2�2|⌦|

Z

⌦

f 2(~x) d~x . (4.33)

Due to the simple form of the deduced constants, the extension of the Chan-Vese segmen-

tation method to non-Gaussian noise models in (4.29) is easy to implement and allows

to be used in a wide range of applications in which piecewise constant approximations

are appropriate.

Additional regularization functionals

In the following we shortly discuss additional regularization functionals which are com-

patible with the proposed variational segmentation framework in (4.21) for the sake of

completeness. Note that we refrain to give the respective implementation details and

numerical experiments within this thesis, since they are mainly covered in our work in

[173].

First, we investigate the classical squared H1-seminorm already proposed by Mum-

ford and Shah in [139], i.e.,

Ri(ui) =

Z

⌦

|rui(~x)|2 d~x i = 1, 2 . (4.34)

This regularization functional enforces possible solutions ui 2 H1(⌦), i = 1, 2, to be

smooth in their respective region ⌦i and extended appropriately in ⌦ /⌦i with respect

to (4.10). With increasing regularization parameter ↵i in (4.21) discontinuities in the

restoration ui of f in ⌦i are penalized stronger. As shown in [139] for ↵i ! +1 the

squared H1-seminorm regularization converges to a piecewise constant limit as in (4.28).

Using the L2 data fidelity terms for the modeling of additive Gaussian noise in (4.24)

together with the regularization functionals in (4.34), one obtains a purely region-based

formulation of the popular Mumford-Shah model, i.e., the ERBMS-model in (4.6). Thus,

the classical Mumford-Shah segmentation model is a special-case of the proposed varia-

tional segmentation framework in (4.21).
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Next, we introduce the Fisher information regularization, given by,

Ri(ui) =
1

2

Z

⌦

|rui(~x)|2
ui(~x)

d~x , u � 0 a.e. i = 1, 2 . (4.35)

The use of this regularization energy is motivated by the fact that the functional in (4.35)

is one-homogeneous and thus is more appropriate in the context of density functions

than the squared H1-seminorm in (4.34). This is particularly significant in the context

of problems with data corrupted by multiplicative noise, e.g., Rayleigh or Loupas noise,

since in these applications the desired functions typically represent densities.

Furthermore, the adaptive regularization property of the denominator u in (4.35) is ad-

ditionally useful, since the background region of an image (with assumed low intensities)

will be regularized stronger than the target subregion. Note that the Fisher information

energy has already been used as regularization functional in density estimation problems,

e.g., in [80, 207]. For a qualitative comparison of the denoising performance between the

H1-seminorm regularization in (4.34) and the Fisher information regularization in (4.35)

in the presence of Poisson noise we refer to [173, §6.1].

Finally, we want to discuss the possibility to use total variation regularization func-

tionals, which can be formulated as,

Ri(ui) = |ui|BV =

Z

⌦

|rui(~x)|`r d~x i = 1, 2 . (4.36)

The total variation regularization also enforces possible solutions u 2 BV (⌦) to be

smooth in their respective region ⌦i, similar to the H1-seminorm regularization in (4.34).

However, using the regularization functional in (4.36) has the advantage of preserving

discontinuities, which is favorable in many computer vision tasks. Depending on the ap-

plication, one typically chooses r = 1 in (4.36) for anisotropic total variation restoration

of f , and r = 2 for isotropic total variation restoration of f in the respective regions

⌦i, i = 1, 2.

In the context of Poisson noise and the Loupas data fidelity term in (4.25), this reg-

ularization functional has been investigated for reconstruction and denoising tasks in

medical images by Sawatzky in [171, §6.3]. We describe some preliminary results of

total variation denoising for data perturbed by multiplicative noise in Section 4.3.8.
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4.3.5 Numerical realization

In this section we anticipate the numerical realization of the minimization problem

(4.22), for which we also provide a theoretical basis in this section.

Due to the simultaneous minimization with respect to u1, u2, and �, the minimization

problem is hard to solve in general and hence we use an alternating minimization scheme

to achieve our aim, i.e., we decouple the restoration of f in ⌦i by the ui (denoising step)

from the computation of an optimal � based on this restoration (segmentation step).

This approach is commonly used for segmentation models in the literature (e.g., for the

variational models of Ambrosio-Tortorelli [7], Chan-Vese [33], or Mumford-Shah [139])

and leads to the following iterative minimization process,

(un+1
b , un+1

t ) 2 argmin
u
i

2X
i

E(ub, ut,�
n) , (4.37a)

�n+1 2 argmin
� 2BV (⌦; {0,1})

E(un+1
b , un+1

t ,�) . (4.37b)

Note that both substep of the minimization scheme in (4.37) are challenging. One has

to consider appropriate subsets Xi of Banach spaces in the denoising step in (4.37a), de-

pending on the chosen data fidelity term and the regularization functional. The segmen-

tation step (4.37b) is di�cult, due to the non-convexity of the function set BV (⌦; {0, 1}).
In the following we discuss the realization of both substeps in the alternating minimiza-

tion scheme separately and discuss how to implement the optimization of the proposed

variational segmentation framework in (4.21).

Numerical realization of denoising step

For the realization of the denoising step (4.37a) of the alternating minimization scheme,

one has to compute optimal restorations of f in the subregions ⌦1,⌦2 ⇢ ⌦, which are

given by the indicator function �n in (4.19). Hence, one has to solve two variational

problems of the form,

un+1
i 2 argmin

u
i

2X
i

⇢

Z

⌦

�n
i Di(f, ui) d~x + ↵iRi(ui)

�

i = 1, 2 , (4.38)

for which the ↵i > 0, i = 1, 2, are regularization parameters and the indicator function

is given by �n
i = �n for i = 1 and �n

i = (1 � �n) for i = 2. Naturally. the choice of

appropriate subsets Xi of Banach spaces in the minimization problems (4.38) and the

numerical realization of these, directly depends on the chosen data fidelity term Di and

the regularization functional Ri from Sections 4.3.3 and 4.3.4, respectively.
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For several reasons, we restrict ourselves in this thesis to the case of the regularization

functional in (4.28), which enforces the solutions of (4.38) to be piecewise constant.

First, the description of the numerical realization for di↵erent data fidelity terms and

the H1-seminorm regularization and Fisher information regularization is already covered

by our work in [173, §5.1f] and is rather challenging to present in a short form from a

technical point-of-view. Second, the evaluation of all discussed data fidelity terms in

Section 4.3.3 in combination with the anticipated regularization functionals in Section

4.3.4 is exhaustive and would go beyond the scope of this thesis. Finally, using constant

approximations has the advantage that one can neglect the two regularization parameters

↵i, i = 1, 2, in the proposed variational segmentation framework (4.21) and hence the

task of performing numerical experiments in Section 4.3.7 is alleviated.

In summary, the denoising step of the alternating minimization scheme (4.37) is per-

formed within this thesis by the explicit formulas for the optimal piecewise constant

functions cn+1
i , i = 1, 2, for additive Gaussian noise in (4.31), for Loupas noise in (4.32),

and Rayleigh noise in (4.33).

Numerical realization of segmentation step

In the following we discuss the numerical realization of the segmentation step, i.e. ob-

taining an optimal indicator function �n+1 in (4.37b) based on the optimal constants

cn+1
i obtained in the denoising step described above.

The standard approaches to solve geometric problems of this form are active contour

models or level set methods as discussed in Section 4.1.2. Although these models have

attracted strong attention in the past, there are several drawbacks leading to compli-

cations in the computation of segmentation results. For example, the explicit curve

representation of snake models do not allow changes in topology of the segmented re-

gions. Furthermore, level set methods require an expensive re-initialization of the level

set function during the evolution process (cf. Section 4.4.3).

However, the main drawback of these methods is the non-convexity of the respective

energy functionals and consequently the existence of local minima leading to unsatisfac-

tory results with wrong scales of details. We discuss the latter problem in more detail

in the context of the Chan-Vese segmentation model in Section 4.5.1.

To overcome the problem of non-convexity of the function set BV (⌦; {0, 1}), we utilize

the concept of exact convex relaxation for the segmentation step. Considering the

form of the energy functional E to be minimized in (4.21), exact convex relaxation

results for such problems have been proposed by Chan, Esedoglu, and Nikolova in [32],

which we recall in the following.
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Lemma 4.3.2 (Exact convex relaxation). Let a 2 R and g 2 L1(⌦). Then there exists

a minimizer of the constrained minimization problem

min
� 2BV (⌦; {0,1})

a +

Z

⌦

g � d~x + |�|BV (⌦) , (4.39)

and every solution is also a minimizer of the relaxed problem

min
v 2BV (⌦; [0,1])

a +

Z

⌦

g v d~x + |v|BV (⌦) , (4.40)

leading to the fact that the minimal functional values of (4.39) and (4.40) are equal.

Moreover, if v̂ solves (4.40), then for almost every µ 2 (0, 1) the indicator function

�̂(~x) =

8

<

:

1 , if v̂(~x) > µ ,

0 , else ,

solves (4.39) and thus also (4.40).

Proof. see [32, Theorem 2]

Recently, several globally convex segmentation models have been proposed in [18, 19, 32]

to overcome the fundamental problem of existence of local minima. The main idea of

these approaches is based on the unification of image segmentation and image denoising

tasks into a global minimization framework.

Within this thesis, we follow the idea from [28], where a relation between the well-known

Rudin-Osher-Fatemi (ROF) model [168] and the minimal surface problem is presented.

We recall this relation in the following theorem and note that the ROF model always

admits a unique solution, since the associated energy functional is strictly convex [28].

Theorem 4.3.3 (Segmentation by solving ROF problem). Let � > 0 be a fixed param-

eter, g 2 L2(⌦), and û the unique solution of the ROF minimization problem

min
u 2BV (⌦)

1

2

Z

⌦

(u � g)2 d~x + � |u|BV (⌦) . (4.41)

Then, for almost every t 2 R, the indicator function

�̂(~x) =

8

<

:

1 , if û(~x) > t ,

0 , else ,
(4.42)
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is a solution of the minimal surface problem

min
� 2BV (⌦; {0,1})

Z

⌦

�(~x) (t � g) d~x + � |�|BV (⌦) . (4.43)

In particular, for all t but a countable set, the solution of (4.43) is even unique.

Proof. see [28, Proposition 3.1]

Using Theorem 4.3.3 we are able to translate our geometric segmentation problem to

a well-investigated ROF denoising problem. We can observe that the problem (4.37b)

corresponds to the minimal surface problem (4.43) by setting

t = 0 and g = D2(f, c
n+1
2 ) � D1(f, c

n+1
1 ) . (4.44)

Therefore, the solution �n+1 of the segmentation step (4.37b) can be computed by simple

thresholding as in (4.42) with t = 0, where û is the solution of the ROF problem (4.41),

for which the function g is specified in (4.44). The alternating minimization scheme for

the numerical computation of a solution to (4.22) is summarized in Algorithm 1.

Algorithm 1 Proposed region-based variational segmentation framework
t = 0
�0 = initializeSegmentation()
repeat

(cn+1
1 , cn+1

2 ) = computeOptimalConstants(�n) Section 4.3.4
g = computeG(cn+1

1 , cn+1
2 ) (4.44)

û = solve wROF(g) Algorithm 2
�n+1 = thresholdU(û, t) (4.42)

until Convergence

TheROF denoising model in (4.41) is a well-understood and intensively studied varia-

tional problem in mathematical image processing. Hence, a variety of numerical schemes

have already been proposed in the literature to solve this problem e�ciently, e.g., the

projected gradient descent algorithm of Chambolle in [30], the nonlinear primal-dual

method of Chan, Golub, and Mulet in [34], the split Bregman algorithm of Goldstein

and Osher in [85], and some first-order algorithms in [9, 31].

In the following we propose to solve the ROF denoising problem (4.41) and thus con-

sequently the segmentation step (4.37b) by using the alternating direction method of

multipliers (ADMM), which is a variant of augmented Lagrangian methods, in order to

decouple the L2 data fidelity term from the singular total variation regularization energy.

For an introduction to augmented Lagrangian methods we refer to, e.g., [71, 83, 107].
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We discuss the solution of the ROF denoising problem in a more general setting, i.e., we

solve the weighted ROF problem (cf. [171, §6.3.4]),

min
u 2BV (⌦)

1

2

Z

⌦

(u � g)2

h
d~x + � |u|BV (⌦) , (4.45)

where h : ⌦ ! R is a weighting function (h ⌘ 1 for ROF). This general discussion

enables us to give some preliminary results of total variation denoising in Section 4.3.8.

Following the approach of Sawatzky in [171, §6.3.4], the weighted ROF problem (4.45)

is equivalent to a constrained optimization problem given by,

min
u,ũ,v

1

2

Z

⌦

(ũ � g)2

h
d~x + �

Z

⌦

|v|`r d~x s.t. ũ = u and v = ru , (4.46)

Based on this constrained optimization problem, we can deduce the augmented La-

grangian functional with respect to (4.46) as,

Lµ1,µ2(u, ũ, v,�1,�2) =
1

2

Z

⌦

(ũ � g)2

h
dx + ↵

Z

⌦

|v|`r dx + i�0(ũ)

+ h�1,ru � vi + h�2, u � ũi +
µ1

2
||ru � v||2L2(⌦) +

µ2

2
||u � ũ||2L2(⌦) ,

where i�0(ũ) is an indicator function with i�0(ũ) = 0 if ũ � 0 almost everywhere and +1
else. Furthermore, µ1, µ2 2 R>0 are penalty parameters used to enforce the constraints

in (4.46) and �1,�2 are Lagrangian multipliers. For the ROF problem the augmented

Lagrangian approach is equivalent to the split Bregman method [23, §3.2], [171, §6.3].
To minimize the augmented Lagrangian functional, one possible way is to apply Uzawa’s

algorithm (without preconditioning) in [64] and alternately minimize Lµ1,µ2 with respect

to u, ũ, and v, given the Lagrangian multipliers �1,�2. Subsequently, one performs a

steepest ascent step with respect to �1,�2. This leads to the following numerical scheme,

uk+1 2 argmin
u

n

⌦

�k
1,ru� vk

↵

+ h�k
2, u� ũki

+
µ1

2
||ru� vk||2L2(⌦) +

µ2

2
||u� ũk||2L2(⌦)

o

,
(4.47a)

ũk+1 2 argmin
ũ�0

⇢

1

2

Z

⌦

(ũ � g)2

h
d~x + h�k

2, u
k+1 � ũi + µ2

2
||uk+1 � ũ||2L2(⌦)

�

, (4.47b)

vk+1 2 argmin
v

⇢

↵

Z

⌦

|v|`r d~x + h�k
1,ruk+1 � vi +

µ1

2
||ruk+1 � v||2L2(⌦)

�

, (4.47c)

�k+1
1 = �k

1 + µ1

�

ruk+1 � vk+1
�

, (4.47d)

�k+1
2 = �k

2 + µ2

�

uk+1 � ũk+1
�

. (4.47e)
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We discuss the numerical realization for the three minimization problems of the alter-

nating scheme in (4.47) in the following.

First, the problem (4.47a) is di↵erentiable in u, and assuming Neumann boundary con-

ditions one deduces the following Helmholtz-type optimality equation,

(µ2I � µ1�) uk+1 = �k
2 + µ2ũ

k � div
�

�k
1 + µ1v

k
�

| {z }

=:zk

, (4.48)

where I is the identity operator and � denotes the Laplace operator. Using finite

di↵erence discretization in a discrete setting on the image domain ⌦, (4.48) can be solved

e�ciently by using a discrete cosine transform (DCT-II), since �� is diagonalizable in

the DCT-transformed space [171, §6.3.4]. Hence, we can compute,

uk+1 = DCT�1

✓

DCT(zk)

µ2 + µ1k̂

◆

, (4.49)

where zk is defined in (4.48), k̂ denotes the negative Laplace operator in the discrete

cosine space, and DCT�1 represents the inverse DCT.

Second, the minimization problem (4.47b) is di↵erentiable with respect to ũ and due to

the non-negativity constraint one can perform an update by the explicit formula,

ũk+1 = max

⇢

g + h(µ2uk+1 � �k
2)

I + µ2h
, 0

�

. (4.50)

Note that the maximum operation in (4.50) has to be understood pointwise on ⌦.

Finally, for the minimization of the singular energy (4.47c), we have to distinguish

between anisotropic total variation and isotropic total variation, i.e., r = 1 and r = 2 in

(4.46), respectively. Following [171, §6.3.4], one can compute the i-th component of vk+1

in the anisotropic case by using a one-dimensional explicit shrinkage formula given by,

vk+1
i = sgn

✓

@uk+1

@xi
� 1

µ1
(�k

1)i

◆

max

✓

�

�

�

�

@uk+1

@xi
� 1

µ1
(�k

1)i

�

�

�

�

� �

µ1
, 0

◆

. (4.51)

For the more challenging isotropic case (due to the coupled components vi, i = 1, . . . , n),

we can use a generalized shrinkage formula introduced by Wang et al. in [213],

vk+1
i =

@uk+1

@x
i

� 1
µ1
(�k

1)i
�

�

�

ruk+1 � 1
µ1
�k
1

�

�

�

`2

max

✓

�

�

�

�

ruk+1 � 1

µ1
�k
1

�

�

�

�

`2
� �

µ1
, 0

◆

. (4.52)

The numerical realization of the minimization of the weighted ROF problem (4.46) and

consequently for the segmentation step (4.37b) is summarized in Algorithm 2.
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We propose to initialize the dual variables and the Lagrange multipliers as zeros. The

alternating minimization scheme of the ADMM solver iteratively updates the di↵er-

ent variables until the relative change of the primal variable uk falls below a specified

threshold, i.e.,
||uk+1 � uk||L2(⌦)

||uk+1||L2(⌦)
< ✏ . (4.53)

4.3.6 Implementation details

In the following we describe relevant implementation details of the proposed variational

high-level segmentation framework and, in particular, give typical parameter settings and

the approximate computational e↵ort needed to perform segmentation. We implemented

Algorithm 1 and Algorithm 2 in the numerical computing environment MathWorks

MATLAB (R2010a) on a 2⇥ 2.2GHz Intel Core Duo processor with 2GB memory and

a Microsoft Windows 7 (64bit) operating system.

Parameter choice

Although we restrict the discussion of the proposed variational segmentation framework

to the case of piecewise constant approximations and hence skipped the two regular-

ization parameters ↵1,↵2 in (4.21), there are still several parameters to be adjusted

correctly in order to perform segmentation.

First, we would like to discuss an important implementation detail of the ADMM solver

realized by Algorithm 2. In order to guarantee an e�cient convergence of the alternating

minimization scheme, we adapt the penalty parameters µ1, µ2 in (4.47) during each

iteration k ! k + 1 by following a common approach from the literature, e.g., see the

work of He et. al in [91].

Algorithm 2 Solver for weighted ROF problem (ADMM)

ũ0 = g
v0 = �0

1 = 0
�0
2 = 0

repeat
uk+1 = updateU(ũk, vk,�k

1,�
k
2) (4.49)

ũk+1 = updateTildeU(g, h, uk+1,�k
2) (4.50)

vk+1 = updateV(uk+1,�k
1) (4.51) or (4.52)

�k+1
1 = updateLambda1(uk+1, vk+1,�k

1) (4.47d)
�k+1
2 = updateLambda2(uk+1, ũk+1,�k

2) (4.47e)
until Convergence
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The idea of this approach is to adjust the penalty parameters of the ADMM solver in a

way, such that the residua converge uniformly to zero. To achieve this, we update the

parameters µ1, µ2 in each iteration step according to the following criterion,

µk+1
1 =

8

>

>

>

<

>

>

>

:

2µk
1 , if |rk1 | > 10 |sk1| ,

0.5µk
1 , if |sk1| > 10 |rk1 | ,

µk
1 , else ,

and µk+1
2 =

8

>

>

>

<

>

>

>

:

2µk
2 , if |rk2 | > 10 |sk2| ,

0.5µk
2 , if |sk2| > 10 |rk2 | ,

µk
2 , else .

The residual terms rk1 , s
k
1 and rk2 , s

k
2 can be measured by,

rk1 = ||vk+1 � ruk+1||L2(⌦) , sk1 = µk
1 || div

�

vk+1 � vk
�

||L2(⌦) ,

rk2 = ||uk+1 � ũk+1||L2(⌦) , sk2 = µk
2 ||ũk+1 � ũk||L2(⌦) .

In context of the method of multipliers, this approach is investigated in more detail by

Rockafellar in [163], and it can be shown that superlinear convergence can be achieved for

rki , s
k
i ! +1, i = 1, 2. The adaption of the penalty parameters µ1, µ2 makes Algorithm

2 also less dependent on their initialization and we propose µ0
1 = µ0

2 = 0.1 for the first

iteration. Finally, we use ✏ = 10�8 in (4.53) for the termination of the ADMM solver

and n = 4 outer iterations of the global minimization scheme realized by Algorithm 1.

Naturally, the appropriate choice of the regularization parameter � in (4.21) depends

on the assumed noise model, the noise variance parameter, and the intended level-of-

detail of the segmentation. However, it is reasonable to give coarse intervals for �, based

on the observations made during our numerical experiments in Section 4.3.7.

If one assumes additive Gaussian noise, and hence uses the piecewise constant approxi-

mations in (4.31), an appropriate choice is � 2 [150, 45.000]. Note that this wide range

of possible parameters is due to the quadratic L2 data fidelity terms in (4.21) in the case

of additive Gaussian noise. In the case of Loupas noise, one has to choose � 2 [20, 300].

Finally, a typical parameter choice for Rayleigh noise is � 2 [0.1, 2.7].

Runtime

In the following, we give details about the expected runtime for Algorithm 1 and Al-

gorithm 2, using the parameter settings discussed above. For an image with 435 ⇥ 327

pixels we measured the number of iterations and the corresponding runtime needed to

solve the weighted ROF problem and perform one segmentation step of the alternating

minimization scheme. The computation of the optimal constant approximations c1, c2

for back- and foreground, respectively, takes approximately 2ms and hence is neglectable.
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Assuming additive Gaussian noise, we observed that the first outer iteration (n = 1) of

Algorithm 1 takes approximately 8000� 13000 inner iterations of Algorithm 2 (⇠ 82s).

Every subsequent outer iteration (n = 2, 3, 4) needs only 3000 � 5000 inner iterations

(⇠ 30s), thus leading in total to approximately 3 minutes runtime for the final segmen-

tation. Note that in the first iteration n = 1 of Algorithm 1, the optimal constants

c1, c2 in (4.21) are not yet adapted to the image properly leading to more outliers. This

explains the higher runtime for this first outer iteration.

For the case of Loupas noise, the first outer iteration of 1 takes approximately 4000�6000

inner iterations of Algorithm 2 (⇠ 40s). Subsequent steps have to perform 3000� 5000

inner iterations (⇠ 30s), hence leading to approximately 2 minutes runtime in total.

Finally, if one assumes Rayleigh noise, we observe that the first outer iteration of 1 needs

approximately 2000 � 4000 inner iterations of Algorithm 2 (⇠ 20s). Every subsequent

outer iteration takes only 1000� 2000 inner iterations (⇠ 10s), hence leading in total to

approximately 1 minute runtime for the final segmentation.

4.3.7 Results

In this section we investigate the influence of the di↵erent noise models on low-level

segmentation using the proposed variational region-based segmentation formulation in

(4.21). We evaluate the impact of physical noise modeling by cross-validating all in-

troduced data fidelity terms and piecewise constant approximations. In particular, we

perform qualitative and quantitative studies on synthetic data and apply the proposed

segmentation framework on ultrasound images from real patient examinations.

Synthetic data

To evaluate the importance of a correct noise model in automated image segmentation,

we investigate images perturbed by physical noise forms described in Section 3.3.1, i.e.,

additive Gaussian noise, Loupas noise, and Rayleigh noise.

We choose the objects to be segmented with respect to typical segmentation tasks from

biomedical imaging. Often, only one major anatomical structure has to be segmented,

e.g., the left ventricle of the heart in echocardiographic examinations [144, 150]. Fur-

thermore, it is desirable to preserve as many image details as possible during the process

of segmentation. Especially in tumor imaging, small lesions having a size of only a few

pixels can be overseen easily, due to a loss of details by too intense regularization. This

leads to severe consequences if not taken into account, and hence it is important to

preserve details of small image regions.
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Fig. 4.3. Synthetic image simulating anatomical structures of di↵erent size.

We designed a synthetic image of size 344⇥ 344 pixels by placing a simplified shape of

the left ventricle of the human heart in the image center, as it would be imaged in an

apical four-chamber view in echocardiography. Below, we put three small squares with

sizes of 1, 2, and 4 pixels, to simulate minor structures, such as small lesions, which we

want to preserve during image segmentation. We set two curved lines on the left and

right side of the software phantom image with a respective diameter of 1 and 2 pixels

to simulate vessel-like structures, which play an important role in perfusion studies of

di↵erent organs [150, 218], e.g., liver veins or coronary arteries of the heart. These

structures have a constant intensity value of 255 and the background has a constant

intensity value of 30. Figure 4.3 shows this synthetic image without noise.

To qualitatively evaluate the impact of the data fidelity term, we perturb the image in

Figure 4.3 with synthetic noise and try to find the optimal value of the regularization

parameter �. This optimization is done with respect to the following two criteria,

• Segmentation of the main structure without noise artifacts.

• Preservation of small anatomical structures without loss of details.

Naturally, it is hard to fulfill both constraints simultaneously, since there is a trade-o↵

between noise-free segmentation results and a detailed partition of the image. For the

synthetic images we look for the highest possible value of �, which preserves as many

small structures as possible, and on the other hand for the lowest possible value of � that

ensures a complete segmentation of the main structure without noise-induced artifacts.

In order to measure the segmentation performance of the proposed method quantita-

tively, we use the Dice index [55] given by,

D(A,B) =
2 |A \B|
|A| + |B| , (4.54)

which compares two segmentations A,B and assigns a value D(A,B) 2 [0, 1].
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First, we begin with the experimental setup for additive Gaussian noise. We per-

turbed the synthetic image from Figure 4.3 using di↵erent noise variance parameters

�2 2 {25, 45, 65, 85, 105} with respect to the noise model (3.6). By this parameter in-

terval we cover di↵erent scenarios ranging from perturbation with little noise, to heavy

noise distortions. Both situations are illustrated in Figure 4.4, and we describe our

observations in the following.

For �2 = 25 the perturbation of the synthetic image is rather moderate. Background and

foreground regions can easily be distinguished visually as demonstrated in Figure 4.4a.

Consequently, all three noise models show satisfying segmentation results in this easy

case, as can be seen in Figure 4.4c - 4.4h. All three data fidelity terms and respective

constants c1, c2 lead to satisfying segmentation results compared to the ground truth

segmentation in Figure 4.4b.

In the case of heavy distortions and �2 = 105, the two di↵erent image regions are barely

separable as can be seen in Figure 4.4i, especially for the small structures and the vessel-

like curves. Naturally, the segmentation performance has significantly dropped for all

three noise models, and the trade-o↵ discussed above gets obvious in Figure 4.4k - 4.4p.

If one tries to keep as many image details as possible, it is not possible to exclude

noise artifacts from the segmentation results. Enforcing a higher regularization helps to

suppress the noise e↵ectively. However, the vessel-like structures are also lost, due to

the high level-of-detail. The best visual result is achieved by the additive Gaussian noise

model as illustrated in Figure 4.4l.

Optimizing the regularization parameter � with respect to the Dice index in (4.54),

confirms this observation as can be seen in Table 4.1. Although the classical L2 data

fidelity terms and the mean values give the best quantitative results, the di↵erence to the

other two noise models is only marginal. One can observe that the Rayleigh noise model

is inferior to the Loupas noise model in presence of an intermediate level of additive

Gaussian noise.

Noise Gaussian model Loupas model Rayleigh model

level �2 � Dice � Dice � Dice

25 170 1.000 100 0.994 1.4 0.999

45 4800 0.998 140 0.992 2.2 0.986

65 9400 0.988 255 0.982 2.35 0.976

85 12000 0.974 270 0.969 2.4 0.965

105 17000 0.962 266 0.951 2.05 0.951

Table 4.1. Segmentation performance of the three di↵erent noise models in pres-

ence of additive Gaussian noise based on the Dice index.
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(a) Data f (�2
= 25) (b) Ground truth (c) Gauss (� = 170) (d) Gauss (� = 350)

(e) Loupas (� = 100) (f) Loupas (� = 115) (g) Rayleigh (� = 1.6) (h) Rayleigh (� = 1.8)

(i) Data f (�2
= 105) (j) Ground truth (k) Gauss (� = 5550) (l) Gauss (� = 15000)

(m) Loupas (� = 115) (n) Loupas (� = 257) (o) Rayleigh (� = 0.7) (p) Rayleigh (� = 1.9)

Fig. 4.4. Visualization of the segmentation results for the three noise models in

presence of additive Gaussian noise with noise parameter �2 = 25 and �2 = 105.
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The next experiment to discuss is the perturbation by Loupas noise. In this case, the

synthetic image from Figure 4.3 is perturbed using di↵erent noise variance parameters

�2 2 {1, 3, 5, 7, 9} with respect to the noise model (3.9). Similar to the last experiment,

we try to cover perturbation with little noise and heavy distortions. Both situations are

illustrated in Figure 4.5, and we describe our observations in the following.

For the case of moderate noise (�2 = 3), the perturbation of the background region

is hard to recognize as Figure 4.5a illustrates. In contrast to this, the left ventricle

structure shows significantly more noise compared to additive Gaussian noise. This is

due to the signal-dependency of Loupas noise. All three noise models give satisfying

segmentation results compared to the ground truth image in Figure 4.5b.

Perturbing the synthetic image with heavy distortions (�2 = 9), the left ventricle struc-

ture in Figure 4.5i shows many gaps. Simultaneously, noise artifacts in the background

region are visible. This induces a more challenging situation for segmentation algo-

rithms. Figure 4.5k - 4.5l shows that it is not possible to obtain satisfying segmentation

results using the traditional L2 data fidelity terms for additive Gaussian noise, due to

the trade-o↵ between noise free segmentation and preservation of image details. Com-

pared to this observation, the Rayleigh noise model seems to be more adaptive to the

multiplicative nature of the noise as can be seen in Figure 4.5o - 4.5p. The Loupas noise

model is able to give satisfying segmentation results, as one can observe in Figure 4.5m.

The qualitative observations described above can be confirmed by optimizing the reg-

ularization parameter � with respect to the Dice index in (4.54). Table 4.2 indicates

that segmentation based on the additive Gaussian noise model fails for a noise variance

of �2 > 5 in this special experimental setup. Both the Rayleigh as well as the Loupas

noise model are more robust under multiplicative noise as gets clear by this quantifica-

tion, and their di↵erence is only marginal. The Loupas noise model achieves the best

segmentation performance in all tested scenarios. This is not really surprising, since we

deduced the respective data fidelity terms and constants especially for this noise type.

Noise Gaussian model Loupas model Rayleigh model

level �2 � Dice � Dice � Dice

1 200 1.000 10 1.000 0.1 1.000

3 3100 0.990 20 1.000 0.8 0.998

5 7000 0.980 160 0.997 1.1 0.991

7 13000 0.965 200 0.990 1.9 0.989

9 14800 0.946 210 0.982 2.35 0.981

Table 4.2. Segmentation performance of the three di↵erent noise models in pres-

ence of Loupas noise based on the Dice index.
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(a) Data f (�2
= 3) (b) Ground truth (c) Gauss (� = 3500) (d) Gauss (� = 5000)

(e) Loupas (� = 30) (f) Loupas (� = 100) (g) Rayleigh (� = 0.6) (h) Rayleigh (� = 1.3)

(i) Data f (�2
= 9) (j) Ground truth (k) Gauss (� = 7000) (l) Gauss (� = 23000)

(m) Loupas (� = 190) (n) Loupas (� = 260) (o) Rayleigh (� = 1.8) (p) Rayleigh (� = 2.6)

Fig. 4.5. Visualization of the segmentation results for the three noise models in

presence of Loupas noise with noise parameter �2 = 3 and �2 = 9.
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Finally, we discuss our observations for the case of Rayleigh noise. Here, the syn-

thetic image from Figure 4.3 is perturbed using di↵erent noise variance parameters

� 2 {0.1, 0.35, 0.6, 0.85, 1.1} with respect to the noise model (3.7). As already dis-

cussed in earlier sections, Rayleigh noise is also signal-dependent and leads to even

stronger artifacts in bright image regions compared to Loupas noise. We show two

di↵erent situations in Figure 4.6, and discuss our observations in the following.

For a relatively low noise parameter of � = 0.35, one can observe heavy distortions in

the left ventricle structure in Figure 4.6a, comparable to Loupas noise with a high noise

variance discussed above. Thus, we have similar results in this experiment: the additive

Gaussian noise model fails to segment the image in the presence of Rayleigh noise as

illustrated in Figure 4.6c - 4.6d. To preserve all image details, one has to tolerate few

noise artifacts in the left ventricle structure using the Loupas noise model, as can be seen

in Figure 4.6e. The best segmentation result compared to the ground truth segmentation

in Figure 4.6b is achieved by the Rayleigh noise model in Figure 4.6h.

Similar observations can be made for a high noise parameter of � = 1.1. Although the

range of intensity values in the perturbed synthetic image in Figure 4.6i has increased

drastically, one obtains comparable segmentation results in Figure 4.6k - 4.6p as in

the case of a low noise parameter. This is due to the multiplicative characteristic of the

image formation process in (3.7), which leads to very low image intensities in dark image

regions compared to the bright image regions, where the noise is significantly amplified.

When optimizing the regularization parameter � with respect to the Dice index in (4.54),

one can observe in Table 4.3 that the additive Gaussion noise model gives unsatisfying

segmentation results for all levels of noise variance �. In contrast to that, both the

Loupas noise model as well as the Rayleigh noise model give satisfying segmentation

results for all tested parameters. Naturally, the Rayleigh noise model performs best

with respect to the Dice index during this experiment.

Noise Gaussian model Loupas model Rayleigh model

level � � Dice � Dice � Dice

0.10 225 0.955 28 0.989 2.2 0.992

0.35 3000 0.946 80 0.988 2.8 0.992

0.60 7600 0.955 170 0.990 2.65 0.994

0.85 18500 0.946 180 0.988 2.15 0.994

1.10 25800 0.955 316 0.990 2.65 0.994

Table 4.3. Segmentation performance of the three di↵erent noise models in pres-

ence of Rayleigh noise based on the Dice index.
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(a) Data f (� = 0.35) (b) Ground truth (c) Gauss (� = 650) (d) Gauss (� = 4600)

(e) Loupas (� = 45) (f) Loupas (� = 100) (g) Rayleigh (� = 0.7) (h) Rayleigh (� = 2.6)

(i) Data f (� = 1.1) (j) Ground truth (k) Gauss (� = 8000) (l) Gauss (� = 47000)

(m) Loupas (� = 120) (n) Loupas (� = 280) (o) Rayleigh (� = 1.1) (p) Rayleigh (� = 2.6)

Fig. 4.6. Visualization of the segmentation results for the three noise models in

presence of Rayleigh noise with noise parameter � = 0.35 and � = 1.1.
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(a) Add. Gaussian noise (b) Loupas noise (c) Rayleigh noise

(d) Add. Gaussian noise (e) Loupas noise (f) Rayleigh noise

Fig. 4.7. Segmentation results for the three noise models on real patient data.

Real patient data

In addition to the validation of the three noise models on synthetic data discussed above,

we evaluated the e↵ect of physical noise modeling on segmentation of real US B-mode

images. It turns out to be challenging to quantify the segmentation accuracy of the

proposed variational segmentation framework on echocardiographic data. The reason

for this is the fact that Algorithm 1 performs a global partitioning of the image domain

due to the results of convex relaxation in Theorem 4.3.3. However, echocardiographic

experts are interested only in the endocardial border of the left ventricle in many cases.

Hence, postprocessing would be needed to extract a closed contour from the global seg-

mentation results of the proposed segmentation framework.

As this is out of the scope of this thesis, we give qualitative results based on our obser-

vations in the following. Note that we overcome this limitation by the realization of a

di↵erent segmentation approach in Section 4.5, which is able to delineate the endocardial

border due to the presence of local minima.

We evaluated the segmentation results of the proposed region-based variational segmen-

tation framework on eight images from real echocardiographic examinations. In general,

we found similar characteristics for the three noise models on all eight images, which are

exemplarily illustrated in Figure 4.7.
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For the additive Gaussian noise model we observed a missclassification of pixels espe-

cially in low-contrast regions, as can be seen for the septal wall of the left ventricle

(upper left part) in Figure 4.7a and 4.7d. These image regions are erroneously assigned

to be part of the background which leads to gaps. We made the same observation for

segmentation of real US B-mode images of the human liver in our work in [173].

In contrast to that, the Rayleigh noise model has the tendency to classify the majority

of pixels as target region. The only exception are image regions with image intensities

close to zero. This inevitably leads to misclassification of noise artifacts as can be seen

for the speckle noise perturbations in the lumen of the left ventricle (lower right part)

in Figure 4.7c and 4.7f. This observation is characteristic for the Rayleigh noise model

as the multiplicative nature of the assumed image formation process damps low image

intensities and amplifies noise significantly in bright image regions (cf. Section 3.3.1).

Finally, we discuss our observations for the Loupas noise model. During our numerical

experiments on the eight real images, the Loupas noise model performed best compared

to the latter two noise models. As illustrated exemparily in Figure 4.7b and 4.7e, one

obtains a good trade-o↵ between the segmentation result of the additive Gaussian noise

model and the Rayleigh noise model. The described speckle noise artifacts in the lumen

of the left ventricle (lower right part) are correctly assigned to the background and sig-

nificantly more pixels in the low-contrast region (upper left part) are classified as target

structure.

4.3.8 Discussion

We introduced a region-based variational segmentation framework for the incorporation

of physical noise models and a-priori knowledge about possible solutions for medical

imaging. In particular, the corresponding data fidelity terms for non-Gaussian noise

have been deduced from statistical inverse problems using Bayesian modeling.

By the restriction to a generalized Chan-Vese segmentation formulation with optimal

piecewise constant approximations, we were able to validate the three noise models from

Section 3.3.1, i.e., additive Gaussian noise, Loupas noise, and Rayleigh noise, qualita-

tively and quantitatively on synthetic data. We observed that the traditional additive

Gaussian noise model leads to erroneous segmentation results, when used for images

perturbed by multiplicative noise. The two other noise models performed significantly

better on the overall set of test images. We observed that the Loupas noise model per-

forms only marginally better than the Rayleigh noise model in this synthetic two-phase

segmentation situation. However, when used for real patient data from echocardiogra-

phy, we observed that the Loupas noise model is superior to the other noise models with

respect to its robustness in presence of physical perturbations, e.g., speckle noise.
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In summary, our findings indicate that the Rayleigh noise model indeed seems not to

be the best choice for medical ultrasound images acquired in clinical environments, as

already suspected in [16, 192]. The log-compressed grayscale images of modern ultra-

sound imaging systems lead to signal distributions which are not representable by the

image formation process assumed for Rayleigh noise. However, this statement does not

contradict the observation of the works discussed in Section 3.3.1, in which the authors

approve that the Rayleigh noise model is an appropriate choice for unprocessed radio

frequency data as used in early imaging systems. The additive Gaussian noise model is

not valid for segmentation of medical ultrasound images as our experiments show. This

coincides with the recent trend in the literature to explicitly model physical noise.

Finally, our observations suggest that the Loupas noise model, originally used for de-

noising tasks on US images, is also suitable for segmentation approaches. To the best

of our knowledge, similar investigations for the Loupas noise model have not been made

in the literature so far, which motivates further studies in future work.

Total variation denoising

During the development of the proposed variational segmentation framework described

in Section 4.3.2, we investigated the potential of total variation denoising for medical

ultrasound imaging using the three di↵erent noise models from Section 4.3.3. This task

can be modeled by the following minimization problem,

inf
u2X

⇢

E(u) =

Z

⌦

D(u, f) d~x + ↵|u|BV

�

, (4.55)

where D is the respective data fidelity term of the investigate noise model, i.e., ad-

ditive Gaussian noise, Loupas noise, and Rayleigh noise model, introduced in Section

4.3.3. Analogously to the approach of Sawatzky in [171, §5.3], we reformulated the

corresponding variational models as nested minimization problems of the form,

un+1 2 argmin
u2X

⇢

1

2

Z

⌦

(u � qn)2

hn
d~x + ↵|u|BV

�

. (4.56)

Based on this formulation, for each outer iteration step one has to solve a convex weighted

ROF problem using Algorithm 2.

We shortly anticipate the mathematical relations which lead to the nested formulation

of quadratic convex problems in (4.56) in the following.
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For the case of additive Gaussian noise, we use the data fidelity term in (4.24), which

immediately leads to the well-known ROF problem,

û 2 argmin
u2X

⇢

1

2

Z

⌦

(u � f)2 d~x + ↵|u|BV

�

. (4.57)

Obviously, the minimization problem (4.57) is already of the form in (4.56) for qn = f

and hn ⌘ 1. Thus, the outer iteration of the nested iteration scheme vanishes.

For the case of the Loupas noise model, we additionally require the solution u to non-

negative, i.e., u � 0 a.e. on ⌦. Using the data fidelity term (4.25) for the minimization

problem (4.55) leads to the following associated Karush-Khun-Tucker (KKT) optimality

conditions [96, Theorem 2.1.4],

0 = 1 � f

u
+ ↵ p � � , (4.58a)

0 = � u , (4.58b)

where � � 0 is a Lagrangian multiplier and p 2 @|u|BV is an element of the subdi↵erential

of the convex total variation functional (see Definition 2.3.11). By multiplying the

first equation in (4.58) with u, one can formally eliminate the second equation and the

Lagrangian multiplier. Using a semi-implicit approach from [172], one can deduce the

following fixed point equation,

un+1 = f � ↵ un pn+1 . (4.59)

Considering the form of (4.59), we see that each step of this iteration sequence can be

realized by an equivalent convex quadratic variational problem,

un+1 2 argmin
u� 0

⇢

1

2

Z

⌦

✓

u �
⇣

f2

un

� �2
⌘

◆2

un
d~x + ↵|u|BV

�

.

Obviously, this formulation is of the form of the nested iteration scheme in (4.56) for

qn = f2

un

� �2 and hn = un.

Analogously, we deduce an equivalent convex quadratic formulation for the Rayleigh

noise model. For u � 0 a.e. on ⌦, we get the following KKT optimality conditions,

0 = 2�2 � f 2

u2
+ ↵ u p � � , (4.60a)

0 = � u , (4.60b)

for which we use the same terminology as in (4.58).
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Noise model qn hn

Additive Gaussian noise f 1

Multiplicative speckle noise f2

un

� �2 un

Rayleigh noise f2

2�2un

(un)2

2�2

Table 4.4. Overview for the function settings of qn and hn in (4.56) with respect

to the di↵erent physical noise models proposed in Section 3.3.1.

As in case of the Loupas model discussed above, we eliminate the Lagrangian multiplier

by multiplication of the first equation in (4.60) with u. Using the semi-implicit approach

from [172] leads to the following fixed point equation,

un+1 =
f 2

2�2 un
+

↵

2�2
(un)2 pn+1 . (4.61)

Each step of (4.61) can be realized by the equivalent convex quadratic problem,

un+1 2 argmin
u� 0

⇢

1

2

Z

⌦

�

u � f2

2�2 un

�2

(un)2

2�2

d~x + ↵|u|BV

�

. (4.62)

Clearly, this formulation has the form of the nested iteration scheme in (4.56) for qn =
f2

2�2un

and hn = (un)2

2�2 . We summarized the settings of the term qn and the weight hn for

the weighted ROF denoising problem for all three noise models in Table 4.4.

Originally, we planned to perform a cross-validation of the three noise models on syn-

thetic data, similar to the evaluation of the proposed segmentation framework in Section

4.3.7. However, we observed that the approach discussed above is not e�cient for the

two multiplicative noise models, i.e., the Loupas noise model and the Rayleigh noise

model. For these cases the inner loop of the nested iteration scheme performed approxi-

mately 20, 000�100, 000 iterations to produce satisfying total variation denoising results

with sharp edges. Figure 4.8 illustrates the problem of slow convergence for the case of

the Rayleigh noise model on a synthetic image with very little noise. As can be seen, it

takes many iterations until the solution u of (4.56) obtains sharp edges.

Furthermore, to guarantee stability of the iteration scheme, one has to use a damped

version of the weighted ROF problem (4.56), which is given by,

un+1 2 argmin
u2X

⇢

1

2

Z

⌦

(u � (! qn + (1� !) un)2

hn
dx + ↵!|u|BV

�

, ! 2 (0, 1] . (4.63)

This confirms the observations in [171, §5.3] for the case of the Loupas noise model.
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(a) 5, 000 iterations (b) 50, 000 iterations (c) 100, 000 iterations

Fig. 4.8. Three intermediate results of total variation denoising using Algorithm

2 using the Rayleigh noise model.
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(a) Synthetic data (b) SSIM index for denoising performance

Fig. 4.9. Synthetic image for the evaluation of total variation denoising in (a) and

plot of the obtained denoising results measured by the SSIM index in (b) for the

additive Gaussian noise model (red) and the Loupas noise model (blue).

Although we were not able to produce meaningful results in an acceptable time for the

Rayleigh noise model in (4.62), we give some preliminary results of total variation de-

noising on synthetic images perturbed by multiplicative noise according to (3.9), in order

to quantify the impact of physical noise modeling on the quality of denoising results.

Figure 4.9 shows the synthetic test image used for this experiment. We arranged rectan-

gular structures of di↵erent sizes and image intensities in front of a constant background.

For a quantitative comparison of the additive Gaussian noise model and the Loupas noise

model, we used the strucural similarity (SSIM) index by Wang et al. in [214], which is

claimed to be more consistent with human perception then e.g., the signal-to-noise ratio

(SNR). For every noise parameter �2 we optimized the regularization parameter ↵ in

(4.56) with respect to the SSIM index.
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(a) Data f (�2
= 0.5) (b) Data f (�2

= 1.0) (c) Data f (�2
= 1.5) (d) Data f (�2

= 2.0)

(e) Gauss (↵ = 0.26) (f) Gauss (↵ = 0.29) (g) Gauss (↵ = 0.30) (h) Gauss (↵ = 0.29)

(i) Loupas (↵ = 0.04) (j) Loupas (↵ = 0.09) (k) Loupas (↵ = 0.12) (l) Loupas (↵ = 0.14)

Fig. 4.10. Total variation denoising results for the additive Gaussian noise model

and the Loupas noise model on synthetic data perturbed by multiplicative noise

according to (3.9).

The qualitative denoising results for the additive Gaussian noise model and the Loupas

noise model are shown in Figure 4.10 for four exemplary noise parameter settings. Figure

4.10a - 4.10d show the synthetic images perturbed by multiplicative noise. The results

of total variation denoising using the additive Gaussian noise model are illustrated in

Figure 4.10e - 4.10h. In Figure 4.10i - 4.10d, we show the results of total variation

denoising using the Loupas noise model.

As can be observed, the traditional L2 data fidelity term of the Gaussian noise model

is not able to perform denoising appropriately. On the one hand, one looses image

details when a high regularization parameter ↵ is used, especially for small structures

and regions with low intensity values. On the other hand, the noise in image regions

with high intensity values leads to heavy perturbations for a small ↵.
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In contrast to that, the Loupas noise model gives satisfying denoising results as can

be observed in Figure 4.10. The reason for this significant di↵erence is the adaptive

nature of the respective Loupas data fidelity term in (4.25), which enforces more intense

regularization for high intensity values.

Additionally, we plotted the best denoising results by means of the SSIM index in Figure

4.9b. Clearly, the additive Gaussian noise model fails to produce satisfying denoising

results, with increasing noise variance �2. Thus, we can state that it is mandatory to

use appropriate physical noise modeling for denoising tasks in presence of multiplicative

noise.

To overcome the lack of e�ciency of the ADMM realization of the weighted ROF problem

(4.56), we plan to investigate alternative minimization methods in future work.

For example, Nascimento et al. propose in [141] to solve a Sylvester equation in order

to perform total variation denoising assuming Rayleigh noise. Furthermore, Afonso et

al. deduce in [3] an alternative regularized convex formulation and also use an ADMM

solver for the numerical realization with higher e�ciency.

4.4 Level set methods

One powerful class of numerical algorithms capable of solving segmentation tasks are

level set methods, which have gained a lot of popularity in the recent years and also com-

peted with various classical segmentation approaches, e.g., active contours (cf. Section

4.1.2). Based on the idea of implicit representations of surfaces, these methods have

various plausible arguments for their use, such as convenient ways to track and handle

the evolution of shapes and interfaces, in particular during topological changes of the

latter ones. After their initial introduction in the seminal work of Osher and Sethian in

[147], level set methods have been investigated extensively by the research community.

Until today a huge variety of applications for level set methods have been proposed,

e.g., classical segmentation tasks [16, 33, 126, 170], simulation and modeling [189], and

rendering [93].

In this section we introduce the basic idea of level set methods and give details about

their numerical realization. We start with a motivation for implicit representations of

functions and the introduction of level set functions in Section 4.4.1. One crucial part of

the level set segmentation model is the selection of an appropriate velocity field for the

segmentation contour, which is discussed for typical choices in Section 4.4.2. We con-

clude the methodology with important numerical tools in Section 4.4.3, which guarantee

convergence of the segmentation algorithms.
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4.4.1 Implicit functions and surface representations

As indicated in Section 4.1.2, the first proposed contour-based segmentation techniques,

e.g., active contours, su↵er from the nontrivial task of tracking the contour during the

evolution process. Using the notation in Section 4.1.2, these methods represent the

segmentation contour � ⇢ ⌦ explicitly by parametrization on a fixed Cartesian grid and

perform the image segmentation by motion of the interface �. This can be done by

defining a velocity field V : ⌦ ! Rn, which describes the movement of the interface for

each point ~x 2 �, i.e., one has to solve the following ordinary di↵erential equation,

d~x

dt
= V (~x) for all ~x 2 � . (4.64)

Methods performing the evolution of the interface � explicitly by this Lagrangian for-

mulation are also referred to as front tracking methods (cf. [161, 211] and references

therein). Discretizing the surface by segments and solving the di↵erential equation in

(4.64) numerically is challenging, since an algorithm which realizes the interface motion

explicitly has to account for di↵erent complicated scenarios. First of all, one has to

realize that even simple velocity fields V can lead to large distortions of the boundary

segments approximating �, which leads to significant loss of accuracy if not compensated

for. This problem is also known as mesh-instability and di↵erent approaches have been

proposed to ease this e↵ect, e.g., a least-squares smoothing scheme in [227] in the context

of collapsing bubbles and jet generation, e.g., as in US-induced microbubble destruction.

An even larger problem is induced by topology changes of the interface �, i.e., separate

regions get connected by the motion of the interface, or a single connected region splits

up into multiple regions as demonstrated in Figure 4.11 below. Hence, a numerical re-

alization has to account for these changes and modify the discretization of the surfaces

accordingly, which is rather di�cult to accomplish.

To overcome the discussed challenges of explicit contour modeling, the idea is to change

the representation of � fundamentally. Eulerian formulations induce a segmentation

contour � ⇢ ⌦ implicitly by modeling it as a level set of a function F : ⌦ ! R. This

idea is based on the theory of implicit functions.

Theorem 4.4.1 (Implicit functions). Let U1 ⇢ Rk and U2 ⇢ Rm be open sets and let

F : U1 ⇥ U2 ! Rm be a continuously di↵erentiable function. Let (a, b) 2 U1 ⇥ U2 be a

point in the k-level set of F , i.e., F (x, y) = k with k 2 R in the image of F .

Further let the m⇥m matrix

dF

dy
=

✓

@Fi

@yj

◆

1i,jm
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be invertible in (a, b). Then there exists an open neighborhood V1 ⇢ U1 of a 2 U1,

a neighborhood V2 ⇢ U2 of b 2 U2, as well as a continuously di↵erentiable function

g : V1 ! V2 ⇢ Rm with g(a) = b, such that for all x 2 V1,

F (x, g(x)) = k .

The function g is called implicit function and for every point (x, y) 2 V1 ⇥ V2 with

F (x, y) = 0, it holds that y = g(x).

Proof. see [69, §8, Theorem 2]

To understand the relationship between explicit definitions of functions and implicit

representations described by Theorem 4.4.1, the following geometrical example is often

used throughout the literature, e.g., in [146, §1.2].

Example 4.4.2 (Unit circle). Let us consider the set of points on the unit circle, i.e.,

S1 = {(x, y) 2 R2 |
p

x2 + y2 = 1} . (4.65)

It is obvious that we cannot find a real function, such that its graph represents the

unit circle. However, the set in (4.65) can be given implicitly using the (continuously

di↵erentiable) function

�(x, y) = x2 + y2 � 1 .

For �(0, 1) = 0 we see that the derivative @�
@y (0, 1) = 1 is not vanishing and hence

Theorem 4.4.1 gives us the existence of a (continuously di↵erentiable) implicit function

g(x) = y which locally parameterizes the unit circle. Such a function g : (�1, 1) ! R
can be given explicitly as

g(x) =
p
1� x2 ,

i.e., g describes the upper half of the unit circle. Analogously, for the point (0,�1) one

can find an implicit function whose graph is the lower part of the unit circle.

As indicated in Section 4.1, the general segmentation task requires the computation of a

partition Pm(⌦) of the image domain ⌦ ⇢ Rn. In order to overcome the disadvantages

of front tracking methods, e.g., the challenging realization of topological changes as

discussed above, the segmentation contour � ⇢ ⌦ is given implicitly as zero-level set of

an appropriately chosen real function using the results of Theorem 4.4.1.
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Definition 4.4.3 (Implicit representation of segmentation contour �). Let ⌦ ⇢ Rn be an

open and bounded subset and let � : ⌦! R be a continuously di↵erentiable real function.

The zero-level set of � partitions ⌦ in the following three parts,

• ⌦+ := {~x 2 ⌦ | �(~x) > 0},

• � := {~x 2 ⌦ | �(~x) = 0},

• ⌦� := {~x 2 ⌦ | �(~x) < 0}.

The (non-empty) zero-level set � implicitly induces a (n� 1)-dimensional interface be-

tween exterior regions ⌦+ and interior regions ⌦�.

Remark 4.4.4. The function � in Definition 4.4.3 is sometimes denoted as ’implicit

function’ itself in the literature, e.g., in [146]. However, in this work we refrain to use

this terminology and remain with the mathematically more rigorous notation of ’implicit

representation’.

In the context of level set methods the partitioning of ⌦ is realized similar to the popular

active contour model (cf. Section 4.1.2) with the help of a dynamic closed segmentation

contour �t = �(t) ⇢ ⌦, which separates ⌦ into interior and exterior regions of objects-

of-interests, i.e., in ⌦�(t) and ⌦+(t), respectively.

Motivated by the huge computational e↵ort of explicit representations, level set methods

have been proposed initially by Osher and Sethian in [147], in order to o↵er an alternative

way to model the evolution process of �(t), while completely avoiding the discussed

complications of tracking its motion explicitly. Representing the surface implicitly as

level set of an appropriate function (cf. Definition 4.4.3) automatically preserves closed

contours and allows topological changes without additional e↵orts, as can be seen in

Figure 4.11.

To model the dynamic motion of the interface �(t) with the help of level sets, the

functions in Definition 4.4.3 have to be further characterized.

Definition 4.4.5 (Level set function). Let ⌦ ⇢ Rn be an open and bounded subset. We

introduce a temporal variable t � 0 to model the evolution of the interface �(t) ⇢ ⌦ in

time. A Lipschitz continuous function

� : ⌦ ⇥ R�0 �! R ,

which implicitly represents the dynamic interface �(t) in the sense of Definition 4.4.3 is

denoted as level set function.
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(a) Initialization of �0
(b) Initialization of �0

(c) �

60 for �60
= �

0
+ 60 (d) �

60
= �

0
+ 60

(e) �

60 for �85
= �

0
+ 85 (f) �

85
= �

0
+ 85

Fig. 4.11. Two-dimensional illustration of a dumbbell-shaped level set function

�t and the implicitly induced interface �t = �(t) during a topology change in the

evolution process, inspired by [39].

After the introduction of the minimal properties of level set functions in Definition 4.4.5,

the question arises how to choose � wisely in order to guarantee the well-behavedness

of numerical solutions based on level set methods. One particular appropriate class of

level set functions are signed distance functions, which are globally smooth on ⌦ except

in a few singularities [146, §2,§7].
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Definition 4.4.6 (Signed distance functions). Let ⌦ ⇢ Rn be an open and bounded

subset. A signed distance function � : ⌦⇥R�0 ! R is a level set function (cf. Definition

4.4.5) satisfying the condition,

|�(~x, t)| = d(~x, t) = ± min { |~x � ~y| | ~y 2 �(t) } for all ~x 2 ⌦ , (4.66)

for which d : ⌦ ⇥ R�0 ! R is the signed distance to the closest point y 2 �(t) and has

the following properties,

• �(~x, t) = d(~x, t) > 0 for all x 2 ⌦+(t),

• �(~x, t) = d(~x, t) = 0 for all x 2 �(t),

• �(~x, t) = �d(~x, t) < 0 for all x 2 ⌦�(t).

Note that the signed distance function � directly depends on the chosen vector norm on

Rn.

Remark 4.4.7. In order to adapt the segmentation contour �(t) during the evolution

process, the values of � have to be changed. Hence, in general one cannot expect a

signed distance function to keep the property of signed distance after several evolution

steps. To maintain the advantages of signed distance functions many authors propose to

frequently reinitialize � during the process of segmentation. In Section 4.4.3 we discuss

this approach in more detail.

In Figure 4.12 an one-dimensional example of a signed distance function �(x, t) = |x|�3

is shown. The segmentation contour is a zero-dimensional manifold, i.e., the set of

two points �(t) = {�3, 3}. As can be seen, � is smooth everywhere with the slope

r� 2 {�1, 1}, except in x = 0. This observation motivates the following remark.

Remark 4.4.8. For a signed distance function � there exist points ~x 2 ⌦, for which the

minimal distance to the interface corresponds to more than one point ~y 2 �(t), i.e., the
corresponding set

S(~x, t) := { argmin
~y 2�(t)

|~x � ~y| }

is not a singleton. We denote these points as singular points, since � is not di↵erentiable

in these kinks. However, for all regular points ~x and a fixed t � 0 it easily follows that

S(~x, t) is a singleton, the signed distance function � is smooth in these regular points,

and |r�(~x, t)| = 1. In Figure 4.12 one can observe a singular point x = 0 of the signed

distance function �(x, t) = |x|� 3.
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Fig. 4.12. 1D illustration of a signed distance function �(x, t) = |x|� 3 (red line)

and the induced interface �(t) = {�3, 3} (dashed blue lines), inspired by [146, §2.4].

4.4.2 Choice of velocity field V

Instead of solving the di↵erential equation in (4.64) to perform the evolution process

of the segmentation contour �(t) explicitly, an implicit representation of � by level

set functions leads to a more convenient approach, as indicated in Section 4.4.1. In

particular, to perform level set segmentation, the steady state solution of a convection

equation is estimated, i.e., one has to compute the level set function � which solves,

d�

dt
(~x, t) = V (~x, t) ·r�(~x, t) + �t(~x, t) = 0 for all ~x 2 ⌦ . (4.67)

Solving the PDE in (4.67) iteratively, describes the evolution of the level set function

�(~x, t) in all ~x 2 ⌦ and (implicitly) also of the segmentation contour �(t) for every time

step t depending on the given velocity field V . This Eulerian formulation of the inter-

face motion describes a transport process. Note, that V in (4.67) also has a temporal

dependency, since the velocity field can change during the evolution process.

For the sake of notational simplicity we use level set functions without the temporal de-

pendence in the following, i.e., �(~x) = �(~x, t), V (~x) = V (~x, t), and � = �(t). However,

we use the rigorous notation including time dependency whenever needed.

One important question in the literature is how to choose the velocity field V on ⌦, such

that the motion of � leads to the desired segmentation. The choice of an appropriate V

is a fundamental problem of segmentation algorithms based on level set methods and is

a major characteristic that discriminates novel approaches from existing ones.
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On the one hand, the motion of � can be driven by internal forces, i.e., forces only

depending on the current evolution state of � (and thus of � itself). Typical choices of

V using internal forces are e.g., motion in normal direction of the interface �, or motion

depending on the mean curvature of the level sets of � (see below).

On the other hand, external forces play an important role, especially for image segmen-

tation tasks. In this case the velocity V can be adjusted with respect to features such

as the signal intensities in the given data [33] or prominent discontinuities [29].

In the case of an external driven velocity field V on the interface � it proved to be useful

to choose V in a way, such that it is constant in the normal direction of � [146, §3], i.e.,

dV

d~n
(~x) = 0 , (4.68)

where ~n denotes the normal vector of � in the point ~x 2 �. This is feasible since the

variation of the velocity in normal direction to the interface is meaningless for the com-

putation of a single evolution step in contrast to the tangential variation. In particular,

the authors in [97] show that keeping condition (4.68) helps to maintain the properties

of a signed distance function (cf. Definition 4.4.6) during the evolution process.

Normal velocity

The first option for the velocity field V used in this thesis is known as normal velocity

[146, §4.1] and can be interpreted as internal force, i.e., it only depends on the current

state the level set function �. Denoting the normalized gradient field by ~N : ⌦ ! Rn,

we define the normal velocity for all regular points ~x 2 ⌦ as,

V (~x) = v(~x) ~N(~x) = v(~x)
r�(~x)
|r�(~x)| , (4.69)

for which v : ⌦! R determines the speed of the interface motion. For a signed distance

function �, the choice of V in (4.69) simplifies to V (~x) = v(~x)r�(~x). For points ~y 2 ⌦
which induce a kink in �, it is feasible to choose the normal vector ~N(~y) as normal

vector in arbitrary direction [146, §1.4]. To plug the normal velocity into the convection

equation (4.67), we take advantage of the useful relationship,

~N(~x) ·r�(~x) (4.69)
=

r�(~x)
|r�(~x)| ·r�(~x) = |r�(~x)| ,

and hence get the following PDE known as level set equation for the evolution of �,

v(~x) |r�(~x)| + �t(~x) = 0 . (4.70)
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(a) t = 0 (b) t = 20 (c) t = 50 (d) t = 100

Fig. 4.13. 2D illustration of a normal velocity-driven contour evolution induced

by updating the values of a signed distance function � at di↵erent time points t,

inspired by [146, §6.1].

Figure 4.13 illustrates the movement of an interface � in normal direction of the asso-

ciated signed distance function �, using (4.70) with v(~x) ⌘ 1. For the initialization of

� the contour of a star shape in an image of size 225 ⇥ 225 pixels is used. As can be

seen, the interface � expands in normal direction in every time step. Since there is no

external force restricting this expansion, the iterative process for the solution of (4.70)

diverges and the whole image will eventually be partitioned as interior region ⌦�.

Mean curvature velocity

A second option for the choice of the velocity field V is called mean curvature velocity

[146, §4.1], which is a special case of the model in (4.70). In this case the velocity term

v in (4.69) directly depends on the mean curvature of the level sets of �, i.e.,

v(~x) = �� (~x) , (4.71)

where � > 0 is a constant and  is the curvature at regular points ~x 2 ⌦. Note that 

is the Euler-Lagrange derivative of the total variation of � (cf. Section 4.5.1) and can

be computed as,

(~x) = r · ~N(~x)
(4.69)
= div

✓

r�(~x)
|r�(~x)|

◆

.

Plugging the velocity in (4.71) into the level set equation (4.70) leads to the following

PDE for the evolution of �,

� �(~x) |r�(~x)| + �t(~x) = 0 . (4.72)

Using the model in (4.72) enforces the level set function � to reduce the mean curvature

of its level sets, which leads to a smooth segmentation contour �.
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(a) t = 0 (b) t = 500 (c) t = 2000 (d) t = 8000

Fig. 4.14. 2D illustration of a mean curvature-driven contour evolution induced

by updating the values of a signed distance function � at di↵erent time points t,

inspired by [146, §4.1].

Figure 4.14 illustrates the motion of an interface �, driven by the mean curvature of the

associated signed distance function � and using (4.72) with � = 1. For the initialization

of � the contour of a star shape in an image of size 225⇥ 225 pixels is used. As can be

seen in the evolution process of �, the sharp features of the star shape are smoothened

out, since the curvature  has the highest magnitude in these points. The iterative

process for the solution of (4.72) eventually converges against the steady-state solution

of a circle, which resembles a geometry with the least mean curvature.

4.4.3 Numerical realization

To compute the steady-state solution of the level set equation (4.70), a straightforward

approach is to use numerical discretization and perform the evolution of the interface

� iteratively. Maintaining numerical stability of the implemented algorithm requires an

appropriate choice of discretization schemes for both temporal and spatial domain. We

discuss possible numerical realizations for a stable evolution of the level set function �

and thus the interface �. We di↵erentiate between several discretization schemes and

stability conditions depending on the specific choice of the velocity field V in (4.67).

Time discretization

Assuming that a level set function � and a velocity field V are given, the evolution

process of � is performed iteratively. We introduced a time variable t for this reason

in Definition 4.4.5. By discretizing the time domain in equidistant intervals of size �t,

we can introduce a notation for the level set function and the velocity field at time step

n of the evolution process by �n(~x) = �(~x, n�t) and V n(~x) = V (~x, n�t), respectively.
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For the sake of clarity, we refrain to indicate the time dependence of the velocity field

in the following and use V (~x) = V n(~x). Note that the specific choice of �t is crucial for

the stability of the evolution process [186, §1.6] and is discussed in form of the Courant-

Friedrich-Lewy (CFL) condition for two exemplary cases below.

A simple approach to compute the evolution of � for the time step n ! n+ 1 is to use

the forward Euler method [146, §3.2], using an explicit first-order time discretization,

�n+1(~x) � �n(~x)

�t
= �V (~x) ·r�n(~x) .

Hence, the evolution of the level set function �n ! �n+1 can be computed explicitly by,

�n+1(~x) = �n(~x) � �t V (~x) ·r�n(~x) . (4.73)

Depending on the chosen spatial discretization of r� and V , the iteration step in (4.73)

has to satisfy stringent time-step restrictions for �t to guarantee stability [146, §3.2]. To
achieve a faster evolution process with a less stringent time step restriction, other time

discretization schemes can be used, e.g., a TVD Runge-Kutta approach as proposed by

Shu and Osher in [181]. However, in many cases first-order time discretization using a

forward Euler method has proven to be su�cient enough [146, §3.5].

Spatial discretization of hyperbolic terms

The success of numerical methods solving the level set equation (4.67) heavily depends

on the discretization schemes for the arising spatial and temporal derivatives [146].

Depending on the chosen velocity field, one has to decide carefully which approximation

is suitable. Thus, we give the appropriate discretization schemes for the velocity fields

introduced in Section 4.4.2, i.e., velocity in normal direction and mean curvature velocity.

In the case of motion in normal direction the velocity field is given in (4.69) as,

V (~x) = v(~x) ~N(~x) ,

where ~N(~x) denotes the normal vector field of the level set function �. Let us assume that

the velocity v(~x) is induced by external forces, i.e., v(~x) does not depend on the current

state of �. Naively, one would discretize the resulting PDE in (4.70) and especially

the hyperbolic term v(~x)|r�(~x)| in a straightforward manner using globally identical

finite di↵erences on ⌦. However, this approach fails even for the most simple velocity

terms v [146, §3.2]. This e↵ect can be understood easily by investigating the following

one-dimensional example.
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Example 4.4.9 (Normal velocity in 1D). Let

�(x) =

8

>

>

>

<

>

>

>

:

�x
2 for x  �2

|x|� 1 for � 2 < x < 2

x
2 for x � 2

be a level set function as illustrated in Figure 4.15a, and let v(x) ⌘ 1 for all x 2 ⌦ ⇢ R
at time step t. If we consider the point x = 1, which induces the right interface between

⌦� and ⌦+, the (outer) normal vector in x is N(x) = 1. Due to v(x) = 1, the right

interface is determined to move in normal direction with speed one, i.e., in the direction

of increasing real numbers. To compute the values of � for the next iteration of the

evolution process in (4.73), one has to solve the hyperbolic PDE,

�n+1(x) = �n(x) � �t v(x)
�

�(�n)0 (x)
�

� . (4.74)

Setting the time step width �t = 1, it gets obvious, that the new values of � solely

depend on the approximation of the derivative (�n)0 in (4.74). Since the information

flows in normal direction for v(x) ⌘ 1, the new position of the right interface � ⇢ R>0

at time step t+1 depends only on the values on the left of it. This is compatible with the

method of characteristics for hyperbolic PDEs [146, §3.2], which states that information

propagates along the characteristic curves of the solution.

Hence, for the motion of the right interface one has to approximate (�n)0 in (4.74) based

on the values left of it, i.e., using finite backward di↵erences (�n)0 ⇡ (D�)� (see e.g.,

[146, §1.4]). Analogously, one has to approximate (�n)0 ⇡ (D+)� for x 2 R<0. The

approximation of �0 in x = 0 has to be computed more carefully, since (D+)� and (D�)�

have di↵erent signs. This is discussed in a more general setting below this example.

Figure 4.15 illustrates the e↵ect of di↵erent numerical approximations for (�n)0. One can

observe the initial situation with the level set function � at time step t in Figure 4.15a.

Updating � for a time step of width �t = 1 and using the appropriate approximations

of the spatial derivative described above leads to a correct motion of the interface with

velocity v(x) = 1 as shown in Figure 4.15b. In contrast to that, using an inappropriate

discretization induces a wrong velocity v(x) = 2 for the interface � in Figure 4.15c.

First-order methods computing the spatial derivatives r� in dependence of the sign of

the local coordinates of the velocity field V as in Example 4.4.9 are known as upwind

schemes [146, §3.2]. To compute the partial derivatives of hyperbolic terms of the form

v(~x)|r�(~x)| it is possible to use the so-called Godunov scheme, initially proposed in

[84], which gives a consistent finite di↵erence method for discontinuous solutions in fluid



4.4 Level set methods 117

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(a) �

n and �

n
= {�1, 1}

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(b) �

n+1 and �

n+1
= {�2, 2}

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

(c) �

n+1 and �

n+1
= {�3, 3}

Fig. 4.15. 1D illustration of an update �n ! �n+1 according to (4.74) using (b) an

appropriate approximation of r� and (c) an inappropriate approximation of r�.

dynamics. The implementation of Godunov’s method is described e.g., in [146, §6.2],
and we give a short summary for its application in the following. For an image domain

⌦ ⇢ Rn the hyperbolic PDE in (4.70) can be written as,

�t(~x) +

✓

v(~x)�x1(~x)

|r�(~x)| , . . . ,
v(~x)�x

n

(~x)

|r�(~x)|

◆

· r�(~x) = 0 ,

where �x
i

denotes the i-th partial derivative of �.

As indicated above, upwind schemes approximate spatial derivatives depending on the

sign of the term, due to the characteristic curves. Since |r�(~x)| � 0, this term can be

ignored and the appropriate discretization of the partial derivative �x
i

solely depends

on the sign of v(~x)�x
i

(~x).

Let us assume the domain ⌦ is isotropically discretized with step width h, i.e., �xi = h

for all i = 1, . . . , n. For the sake of brevity, we denote with �+
i = (D+

i )� the finite

forward di↵erences and by ��
i = (D�

i )� the finite backward di↵erence for all i = 1, . . . , n.

Then the Godunov scheme di↵erentiates the following four cases for the selection of an

appropriate discretization (Dh
i )� ⇡ @�

@x
i

,

�

Dh
i

�

�(~x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

��
i (~x) for v(~x)��

i (~x) > 0 ^ v(~x)�+
i (~x) > 0 ,

�+
i (~x) for v(~x)��

i (~x) < 0 ^ v(~x)�+
i (~x) < 0 ,

0 for v(~x)��
i (~x)  0 ^ v(~x)�+

i (~x) � 0 ,

�max
i (~x) for v(~x)��

i (~x) � 0 ^ v(~x)�+
i (~x)  0 ,

(4.75)

for which �max
i is given as,

�max
i = (Dmax

i )�(~x) = argmax
Dh

i

2{(D�
i

),(D+
i

)}

�

�Dh
i �(~x)

�

� .
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Remark 4.4.10. Note that the first case of the Godunov scheme in (4.75) tells us to

use finite backward di↵erences D�
i in Example 4.4.9 for all x > 0, while the second

case states that we have to use finite forward di↵erences D+
i for all x < 0 to compute

the motion of the contour �n correctly. The third case applies for the kink in x = 0,

since this point can be interpreted as a locally flat point of expansion. Although this

situation does not occur in Example 4.4.9, the last case in (4.75) describes the opposite

situation of a V-shaped kink and looks like a roof top. In terms of hydrodynamics, it can

be interpreted as a point where two fluids collide, also known as shock. Here the velocity

vector of higher magnitude determines the motion in the subsequent time step.

To further increase the accuracy of the Godunov scheme presented in (4.75) the first-

order finite di↵erences D�
i and D+

i can be exchanged by approximations of higher order,

e.g., by using the Hamilton-Jacobi (W)ENO approach [146, §3.4]. However, within this

work we restrict ourselves to first-order approximations, since these are accurate enough

for the segmentation task at hand.

Using the forward Euler time discretization introduced above in combination with the

upwind finite di↵erencing method is a consistent finite di↵erence approximation for

(4.67) according to [146, §3.2]. In order to achieve convergence of this finite di↵erence

approximation, we have to ensure stability of the evolution process. For the case of

normal velocity the following theorem gives the necessary Courant-Friedrich-Lewy (CFL)

condition for the convergence of the iteration scheme (4.73).

Theorem 4.4.11 (Convergence for normal velocity). Let � be a level set function and

let V (~x) = v(~x) ~N(~x) be a velocity field in normal direction with speed v independent of

the current state of � (cf. (4.69)). The forward Euler method in (4.73) converges if the

following CFL condition holds,

�tmax
~x2⌦

(

n
X

i=1

|Vi(~x)|
�xi

)

< 1 . (4.76)

Proof. [186, Theorem 1.6.2]

Remark 4.4.12. In the special case of echocardiographic data, i.e., n 2 {2, 3}, and

assuming a standard isotropic numerical discretization of the spatial domain ⌦, i.e.,

�xi = 1 for i = 1, . . . , n, we can choose a fixed ↵ < 1 and hence simplify the CFL

condition on the time step width �t in (4.76) by,

�t =

8

>

<

>

:

↵ /max
~x2⌦

{ |V1(~x)|+ |V2(~x)| } for n = 2 ,

↵ /max
~x2⌦

{ |V1(~x)|+ |V2(~x)|+ |V3(~x)| } for n = 3 .
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Spatial discretization of parabolic terms

As indicated above, the success of a numerical solution for a given PDE crucially de-

pends on the chosen discretization scheme. For hyperbolic terms we introduced upwind

di↵erence schemes, e.g., the Godunov scheme, to approximate the respective partial

derivatives. However, this is not a universal solution and may fail in di↵erent situations.

For parabolic terms, e.g., the curvature  introduced in Section 4.4.2 or heat di↵usion in

solid materials, one has to choose finite di↵erences which include information from all

spatial directions [146, §4.2].
In order to discretize the curvature driven velocity V (~x) = ��(~x)|r�(~x)| in (4.72),

one can use the following formulas for the mean curvature (~x) of � [146, §1.4],

 =
�

�2
x�yy � 2�x�y�xy + �2

y�xx

�

/ |r�|2 for n = 2 , (4.77a)

 =
�

�2
x�yy � 2�x�y�xy + �2

y�xx

+ �2
x�zz � 2�x�z�xz + �2

z�xx for n = 3 ,

+ �2
y�zz � 2�y�z�yz + �2

z�yy

�

/ |r�|3
(4.77b)

where �ij = @2�
@i@j denotes the second order partial derivatives. To approximate the

partial derivatives of first and second order in (4.77), central di↵erences should be used.

These are consistent of order 2 and incorporate information from both sides, i.e.,

@�

@xi
(~x) ⇡ (D0

i )�(~x) = (D+
i +D�

i )�(~x) =
�(~x+�xi)� �(~x��xi)

2�xi
.

Remark 4.4.13. If � is (close to) a signed distance function (cf. Definition 4.4.6), the

velocity in (4.71) can be approximated by V (~x) = ���(~x) and hence (4.72) becomes the

heat equation [146, §4.1],

�t(~x) = ���(~x) for � > 0 .

In this case the domain dependency of the occurring spatial derivatives of the parabolic

PDE becomes obvious. Furthermore, the Laplace operator � can be computed much

more e�ciently in comparison to (4.77), i.e.,

�� = �xx + �yy + �zz . (4.78)

However, in order to use (4.78) one has to guarantee that the level set function � is

su�ciently close to a signed distance function (at least in vicinity of the zero level set)

to guarantee a correct motion of the interface �.



120 4 Region-based segmentation

Using the forward Euler time discretization introduced above in combination with central

di↵erences is a consistent finite di↵erence approximation for (4.67) [146, §4.2]. In order

to achieve convergence of this finite di↵erence approximation, we have to ensure stability

of the evolution process [186, §1.5]. For the case of mean curvature velocity the following

theorem gives the necessary CFL condition for convergence of the iteration scheme (4.73).

Theorem 4.4.14 (Convergence for mean curvature velocity). Let � be a level set func-

tion and let V (~x) = ��(~x) be a curvature-driven velocity field in normal direction with

� > 0 (cf. (4.71)). The forward Euler method in (4.73) converges if the following CFL

condition holds,

2�t
n
X

i=1

�

(�xi)2
< 1 . (4.79)

Proof. [186, Theorem 6.3.1]

Reinitialization to signed distance function

In the previous sections we have already described several advantages of choosing the

level set function � as a signed distance function, e.g., global smoothness and e�ciency

of numerical realizations as discussed in Remark 4.4.13. However, until now we omitted

to discuss how to obtain such a signed distance function for a given segmentation contour

� ⇢ ⌦ and how to maintain the desired properties of �.

Let us assume the segmentation interface � is induced by a binary mask on the domain ⌦

in a discrete setting. Then a straightforward approach is to compute the distance of each

point ~x 2 ⌦ to the closest point on � explicitly, e.g., by using contour plotting algorithms

[146, §7.2]. This is a rather slow approach, since in the most naive implementation one

would need O(|⌦|2) computations to obtain a signed distance function. Since we are

only interested in the motion of �, one could restrict these computations to a local band

around the zero level set of �. Alternatively, one can use fast marching or fast sweeping

methods (see e.g., [93]) to e�ciently initialize � as signed distance function. As we

discuss below, there exists an elegant approach which only needs an initialization of the

signed distance function � with a local band of distance one around �.

Although � has been initialized as signed distance function, it often shifts away from

being a signed distance function during the evolution of � in the iterative process (4.73).

Due to cumulating numerical errors, this can result in steep local gradients, which is un-

desired, e.g., with respect to the temporal step width �t in (4.76). Thus, it is reasonable

to reinitialize � to being a signed distance function periodically. This approach has been

initially proposed by Chopp in [39].
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Reinitialization can be performed in various ways, e.g., by generating a binary mask

for the interface � and initializing � explicitly as discussed above. However, a more

sophisticated way is to solve a hyperbolic PDE known as reinitialization equation, which

was rigorously introduced by Sussmann, Smereka, and Osher in [189] as,

S(~x) (|r�(~x)| � 1) + �t(~x) = 0 . (4.80)

where S denotes an indicator function with

S(~x) =

8

>

>

>

<

>

>

>

:

1 , for ~x 2 ⌦+ ,

0 , for ~x 2 � ,

�1 , for ~x 2 ⌦� .

(4.81)

To solve (4.80), � only has to be initialized as a signed distance function locally around

� in a band of width one [146, §7.4], i.e., one initializes �0(~x) = S(~x) according to

(4.81). Since the reinitialization equation itself can be seen as a special case of the level

set equation (4.70) with normal velocity, i.e.,

V (~x) = S(~x) ~N(~x) ,

it can be solved by discretizing the hyperbolic terms using upwind di↵erencing and

updating � with a forward Euler time discretization as discussed above. The reinitial-

ization and construction of a signed distance function � is summarized in Algorithm 3.

Algorithm 3 Reinitialization of a signed distance function
S = initializeIndicator(�) (4.81)
� = S
repeat

r� = computeDerivativesGodunov(S, �) (4.75)
�t = computeCFL(r�) (4.76)
� = updatePHI(�,r�,�t) (4.73)

until (t < maxIteration) || Convergence

Figure 4.16 illustrates the construction or reinitialization of a signed distance function �

after an appropriate initialization around a segmentation contour � with a fixed distance

of ten pixels to the domain border. As can be seen in Figure 4.16a and 4.16d, it is

su�cient to initialize � as a signed distance function in a local band of size one around �

in order to guarantee the convergence of Algorithm 3 to a function that is approximately

a signed distance function on ⌦ (up to kinks), as shown in Figure 4.16c and 4.16f.
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Fig. 4.16. Construction of a signed distance function � by solving (4.80) iteratively

using Algorithm 3. (a)-(c) Two-dimensional illustration of � for di↵erent time steps.

(d)-(f) One-dimensional plot of the values of � in the horizontal center line for

di↵erent iterations. The blue dashed lines indicate the position of the interface �

induced by �.

Since we are in most cases only interested in a correct motion of the segmentation contour

�, it is su�cient to iterate Algorithm 3 only a few times to construct � as signed distance

function in a local band of several pixels around �, which is illustrated in Figure 4.16b

and 4.16e.

Recently, Li et al. proposed in [126] a method that enforces � to be a signed distance

function, by incorporating the following regularization term for variational methods,

R(�) =
�

2

Z

⌦

(|r�(~x)| � 1)2 d~x . (4.82)

By choosing the regularization parameter � in (4.82) appropriately, the level set function

� can be enforced to be close to a signed distance function without explicit reinitial-

ization during the minimization of the respective variational model. This is meant to

avoid the expensive reinitialization process of Algorithm 3 and erroneous motion of the

interface due to numerical approximation errors [126].
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4.5 Discriminant analysis based level set segmentation

In this section we introduce a novel variational model for two-phase segmentation tasks,

which is related to the popular Chan-Vese method from Section 4.2.2. In particular, the

proposed model is based on a discriminant analysis of the given data and a replacement

of the common L2 data fidelity terms by a more robust similarity measure. This ap-

proach is numerically realized using level set methods as introduced in Section 4.4.

First, we give a motivation for this approach by observations made for the Chan-Vese

model, when used on medical ultrasound data perturbed by multiplicative speckle noise

in Section 4.5.1. Subsequently, we introduce the discriminant analysis based segmenta-

tion model in Section 4.5.2 and discuss the numerical realization of both segmentation

algorithms. Finally, we validate the methods on real patient data from echocardiographic

examinations in Section 4.5.3.

4.5.1 Motivation

As already concluded in Section 4.3.7, standard segmentation formulations such as the

popular Chan-Vese approach, tend to produce erroneous segmentation results in the

presence of multiplicative speckle noise. This is caused by the insu�cient modeling of

signal-dependent perturbations using the common L2 data fidelity term (see also The-

orem 6.3.1). By incorporating physical noise models in segmentation algorithms the

robustness and segmentation accuracy can be increased significantly, as shown in Sec-

tion 4.3. However, this adaption leads in general to increased computational e↵ort, due

to sophisticated modeling and relatively complex numerical solving schemes (cf. Section

4.3.5) with additional parameters to be optimized.

The goal in this section is to introduce a simple variational segmentation formulation

which accounts for the impact of multiplicative speckle noise, i.e., induces a higher ro-

bustness on medical US data. Simultaneously, we aim to obtain closed segmentation

contours which delineate the endocardial border of the left ventricle, as this is not pos-

sible with the proposed variational segmentation framework due to the global convex

segmentation approach in Section 4.3.5.

To give a motivation for the proposed approach, we observe the impact of two di↵erent

noise models on an intensity histogram, i.e., additive Gaussian noise according to (3.6)

and multiplicative speckle noise as modeled in (3.9).

The e↵ect of additive Gaussian noise is illustrated in Figure 4.17a. Obviously, for a fixed

variance �2 > 0 there is a globally identical impact on the signal distribution. This is

natural, since additive Gaussian noise is signal-independent as indicated in Section 3.3.1.
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(a) Additive Gaussian noise (b) Multiplicative speckle noise

Fig. 4.17. E↵ect of additive and multiplicative noise on the intensity distribution

in an image histogram.

For multiplicative speckle noise one can observe di↵erent characteristics in Figure 4.17b.

In regions with high intensity values the grayscale distribution gets spread out much

wider than in regions with low intensity values. This e↵ect is amplified for increasing

noise variance �2. Thus, it is more di�cult to separate the two signal distributions com-

pared with additive Gaussian noise, especially in the overlapping areas of the histogram.

It is our goal to incorporate this observation on the signal distribution in US images

e�ciently for a robust segmentation of US images.

Restrictions of the Chan-Vese method

In the following we discuss the characteristics of the Chan-Vese formulation (4.7) intro-

duced in Section 4.2.2 for the situation of images perturbed by multiplicative speckle

noise as illustrated in Figure 4.17b.

In order to overcome the enormous numerical e↵ort of using an explicit parametrization

of �, Chan and Vese propose in [33] to express ECV in (4.7) with the help of level set

functions (cf. Section 4.4). They use a signed distance function � : ⌦! as introduced

in Definition 4.4.6 such that the segmentation contour � and the two respective regions

are given implicitly as level sets of �. Furthermore, they use the well-known Heavyside

function

H(x) =

8

<

:

0 , for x < 0

1 , for x � 0

as an indicator function for the two respective subregions ⌦1,⌦2 ⇢ ⌦ induced by �, i.e.,

in accordance with (4.19) we have H(�(~x)) = 0 for ~x 2 ⌦2 and H(�(~x)) = 1 else.
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Thus, the optimal constants in (4.9) can be expressed as,

c1 =

R

⌦ f(~x)H(�(~x)) d~x
R

⌦ H(�(~x)) d~x
, c2 =

R

⌦ f(~x) (1�H(�(~x))) d~x
R

⌦(1�H(�(~x))) d~x
. (4.83)

Additionally, the weak derivative of the Heavyside function H in the distributional sense

(see e.g., [5, §3.9]) is given as the one-dimensional �-Dirac measure,

�0(x) =
d

dx
H(x) .

Using the notation above, the energy functional in (4.7) can be rewritten in the context

of level set methods as,

FCV (c1, c2,�) =

�1

Z

⌦

(c1 � f(~x))2 H(�) d~x + �2

Z

⌦2

(c2 � f(~x))2 (1�H(�(~x))) d~x

+ �

Z

⌦

�0(�(~x)) |r�(~x)| d~x + �

Z

⌦

H(�(~x)) d~x ,

(4.84)

and the associated minimization problem reads as,

inf {FCV (c1, c2,�) | ci constant, � 2 W 1,1(⌦) } . (4.85)

In general, a proof for existence of minimizers for 4.85 is hard to obtain, due to the

non-convexity of (4.84). However, using the results from convex relaxation discussed

in Section 4.3.5, the authors Brown, Chan, and Bresson prove the existence of global

optima for the relaxed problem in [19].

In most segmentation tasks it is not reasonable to penalize the size of the segmentation

area and hence the respective regularization term is disregarded [33], i.e., formally � = 0

in (4.84). We follow this approach and discuss a reduced variant of the original Chan-

Vese formulation in the following.

To compute a local minimum for (4.85), an alternating minimization scheme is used as

indicated in Section 4.2.2. Thus, the minimization problem (4.85) is transformed into

two decoupled minimization problems, i.e.,

inf {FCV (c1, c2,�
n) | ci constant } , (4.86a)

inf {FCV (c
n+1
1 , cn+1

2 ,�) | � 2 W 1,1(⌦) } . (4.86b)

To solve (4.86a), the optimal constants c1 and c2 can be computed for a fixed � analo-

gously to (4.9) as mean values of the respective subregions ⌦1,⌦2 ⇢ ⌦ using (4.83).
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For the minimization of the subsequent minimal partition problem (4.86b) the authors

in [33] propose to use regularized versions of the Heavyside function H and the one-

dimensional �-Dirac measure �0, i.e., for a small ✏ > 0 they use the following functions,

H✏(x) =
1

2

✓

1 +
2

⇡
arctan

⇣x

✏

⌘

◆

, �✏(x) = H 0
✏(x) =

1

⇡
�

x2

✏ + ✏
� . (4.87)

Denoting with f(x, u, ⇠) = f(x,�,r�) the integrand of FCV and using the regularized

functions in (4.87), the strong formulation of the Euler-Lagrange equation (cf. Remark

2.3.16) for minimization of (4.86b) with respect to � can be deduced as,

0 =
n
X

i=1

@

@xi
[f⇠

i

(x, u, ⇠)] � fu(x, u, ⇠)

= �✏(�(~x))

✓

� div

✓

r�(~x)
|r�(~x)|

◆

� �1(f(~x) � c1)
2 + �2(f(~x) � c2)

2

◆

,

(4.88)

with the Cauchy boundary condition [33],

�✏(�(~x))

|r�(~x)|
@�

@~n
(~x) = 0 for all ~x 2 @⌦ ,

which has to be fulfilled by any minimizer �̂ of (4.86b) a.e. on the domain ⌦.

Introducing an artificial temporal variable t 2 �0 and applying a gradient descent

approach, one is interested in a stationary solution of the resulting PDE, i.e., @�
@t = 0 for

(4.88). A forward Euler time discretization can be applied as discussed in Section 4.4.3

and hence one gets the following iterative update,

�n+1(~x) =

�n(~x) + �t �✏(�
n(~x))

✓

� div

✓

r�n(~x)

|r�n(~x)|

◆

� �1(f(~x)� c1)
2 + �2(f(~x)� c2)

2

◆

.

We exchange the regularized �-Dirac measure �✏ by |r�n| to expand the evolution of �

to all level sets (cf. Section 4.4), i.e., globally on ⌦. Then the iterative update reads as,

�n+1(~x) =

�n(~x) + �t |r�n(~x)|
✓

� div

✓

r�n(~x)

|r�n(~x)|

◆

� �1(f(~x) � c1)
2 + �2(f(~x) � c2)

2

◆

,

(4.89)

and thus is directly related to (4.73) for

~V =

✓

� div

✓

r�
|r�|

◆

� �1(f � c1)
2 + �2(f � c2)

2

◆

r�
|r�| .
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Algorithm 4 Chan-Vese segmentation method
S = initializeIndicator(�) (4.81)
�0 = initializePhi(S) Algorithm 3
repeat

for k = 1; k  M ; k ++ do
(c1, c2) = computeOptimalConstants((�n)k) (4.83)
�t = computeCFL(c1, c2, (�n)k, �) (4.90)
(�n)k+1 = updatePhi((�n)k,�t)) (4.89)

end for
�n+1 = reinitializePhi((�n)M) (4.75)

until Convergence

This can be interpreted as motion in normal direction controlled by both internal (mean

curvature) and external forces (data fidelity) as discussed in 4.4.2. The curvature term

in (4.89) can be approximated using (4.77) as introduced in Section 4.4.3.

For this case the stability of the iterative update �n ! �n+1 is guaranteed for the

associated convection-di↵usion PDE [186, §6.4] by the Courant-Friedrich-Lewy condition
using Theorems 4.4.11 and 4.4.14,

�tmax
~x2⌦

(

n
X

i=1

|D(c1, c2, f)(~x) �x
i

(~x)|
|r�(~x)|�xi

+
2�

(�xi)2

)

< 1 , (4.90)

for which D(c1, c2, f)(~x) = �2(f(~x)� c2)2 � �1(f(~x)� c1)2 denotes the data fidelity.

Remark 4.5.1. In our situation of performing segmentation tasks on medical images

the temporal step width �t can be given explicitly from the CFL condition (4.90) for

0 < ↵ < 1 and �x = 1 (isotropic spatial step width for image processing),

�t =
↵ |r�(~x)|

max
~x2⌦

|�2(f(~x)� c2)2 � �1(f(~x)� c1)2||r�(~x)|1
+

↵

2n�
.

The alternating minimization scheme for the level set formulation of the Chan-Vese

functional is summarized in Algorithm 4. Note that we introduced a second index M

for the maximal number of inner iterations until the (optional) reinitialization of � to

a signed distance function as described in Section 4.4.3.

Keeping the optimal constants c1, c2 fixed and disregarding the smoothness term for �,

i.e., formally � = 0, we observe that the data fidelity term in (4.84) gets minimal, if

� clusters all intensity values with respect to the mean values of ⌦1 and ⌦2. Hence, a

pixel gets assigned to ⌦2, if the di↵erence of its intensity value to the respective mean

value is smaller than to the mean value of the background region (and vice versa).
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Obviously, this induces a classification threshold

tCV =
c1 + c2

2
.

Note that this threshold only depends on the mean values of the two signal distributions

and does not consider the respective variances. As discussed in Section 4.3.3 the L2

data fidelity term and hence the induced threshold tCV represent an optimal choice for

segmentation tasks on images perturbed by additive Gaussian noise. This can also be

seen in Figure 4.17a, where the noise perturbation is global and an optimal threshold

only depends on the mean values of the respective signal distributions.

However, this model is rather inapplicable for images perturbed by multiplicative noise.

This fact is illustrated in Figure 4.18. The two solid black lines resemble the intensity

values of an unbiased signal u in an image intensity histogram. By adding multiplicative

speckle noise according to (3.9) with � = 1 and noise variance parameter �2 = 2.7 we

generated a perturbed image f . As can be seen at the image intensity histogram of f

(dashed line), the intensity values get spread out according to a local normal distribution

induced by the normal distributed random variable ⌘ in (3.9). Due to the multiplicative

nature of this noise form the noise variance is significantly higher in the part with higher

intensity values of the image histogram. Thus, it is more challenging to separate the

two signals, especially in the overlapping part of the histogram.

The red line in Figure 4.18 illustrates the threshold tCV induced by the mean values of

the two signals (black solid lines). Apparently, the data cannot be partitioned reasonably

by tCV and a shift to the left side of the histogram would be appropriate. In Section 4.5.2

we introduce a method to estimate a threshold by the means of discriminant analysis

that also considers the variance of the two signal distributions and hence leads to a

better partitioning of the signal intensities (indicated by the blue dashed line).

This observation of the induced threshold tCV gets even more apparent, if one recalls the

Euler-Lagrange equations (4.88) of the minimal partition problem (4.86b). By setting

�1 = �2 (standard parameter choice in [33]) the associated Euler-Lagrange equations

with respect to the level set function � are given by,

0 = �✏(�(x))

✓

µ div

✓

r�(x)
|r�(x)|

◆

� (f(x)� c1)
2 + (f(x)� c2)

2

◆

= �✏(�(x))

✓

µ div

✓

r�(x)
|r�(x)|

◆

� 2(c2 � c1)

✓

f(x) � c1 + c2
2

| {z }

= t
CV

◆◆

.

Here, µ is the rescaled parameter � in (4.88). Disregarding the regularization term for

�, i.e., µ = 0, it gets clear that the Euler-Lagrange equation only holds in one case.
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Fig. 4.18. Comparison of the Chan-Vese threshold tCV and the Otsu threshold tO

(discussed in Section 4.5.2) in the presence of multiplicative noise.

The equilibrium status of the evolution of � is obtained, if the segmentation contour is

situated at points ~x 2 ⌦ for which f(~x) = tCV holds true (see also [146, §12.2]).
For the case �1 6= �2, the two L2 terms are not weighted equally and hence the induced

threshold is shifted towards the mean value with higher regularization parameter. Note

that it is in general di�cult to choose the two parameters �1,�2 appropriately for a

given data set (see discussion below). Hence, in most cases the two parameters are

chosen equally for the sake of simplicity [33].

As we show in Section 4.5.3 the data fidelity term of the Chan-Vese model (4.84) and

the induced threshold tCV are not appropriate for medical ultrasound images and lead

to erroneous segmentation results.

The main drawback of the classical Chan-Vese formulation (4.84) is the non-convexity of

the associated energy functionals and consequently the existence of local minima, which

lead to unsatisfactory segmentation results. This is due to two di↵erent facts. First,

the original Chan-Vese formulation in (4.7) has four di↵erent parameters to be chosen

for a given data set. Disregarding the regularization term for the segmentation area,

i.e., � = 0, three parameters have to be estimated for a given data set. Since these pa-

rameters influence each other, this leads to many local minima in the parameter space.

Obviously, the optimization of these parameters for a huge set of images to be segmented

is very time consuming, and hence a more simple model with less parameters would be

advantageous in such a situation.
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The second reason for the existence of local minima is based on the fact that a solution

of the minimization problem (4.85) can only be achieved by an alternating minimization

scheme of the two corresponding subproblems (4.86a) and (4.86b), as realized in Algo-

rithm 4. Obviously, there is a strong dependence between � and the optimal constants

c1 and c2, since the estimation of optimal constants c1, c2 depends on the current state

of � and vice versa. This alternating minimization frequently converges to a local mini-

mum, depending on the specified parameter set. For fixed parameters �1,�2, and � this

local minimum depends on the specific initialization of � and thus of the segmentation

contour �, since Algorithm 4 is totally deterministic.

As can be seen in two slightly di↵erent situations in Figure 4.19, the success of the

Chan-Vese segmentation crucially depends on the chosen initialization of the segmenta-

tion contour �. The red rectangle in Figure 4.19a shows the first initialization within

the dark region of the left ventricle in an US B-mode image of the human heart in an

apical four-chamber view. Since only few pixels inside the rectangle do not belong to

the background region, the Chan-Vese method converges to an acceptable segmentation

of the LV as shown in Figure 4.19b.

However, if the initialization is slightly changed, one obtains totally di↵erent segmenta-

tion results as illustrated in Figure 4.19d, in which a part of the septal wall is segmented.

For this result, a shift of the previous initialization one pixel to the left has been per-

formed. The reason for this unsatisfying segmentation result is that some bright pixels in

the initialization in Figure 4.19c lead to the estimation of a high mean value within this

region. Although most pixels within the segmentation contour belong the background,

the iterative optimization process converges to this local minimum.

(a) 1

st Initialization (b) CV result for (a) (c) 2

nd Initialization (d) CV result for (c)

Fig. 4.19. The problem of local minima illustrated by segmentation results of the

Chan-Vese (CV) model based on two slightly di↵erent initialization.

These observations motivate us to propose a novel segmentation formulation in Section

4.5.2 that overcomes the problems discussed above, e.g., the strong dependence of the

obtained segmentation results on the chosen initialization of the segmentation contour

as discussed above.
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4.5.2 Proposed discriminant analysis based segmentation model

In order to overcome the drawbacks of the popular Chan-Vese segmentation model dis-

cussed in Section 4.5.1 we propose a novel variational segmentation formulation based

on level set methods. This section represents an extended version of the work proposed

in [196]. The data fidelity term of the Chan-Vese formulation is exchanged by a simple

term, which partitions the data according to an optimal threshold by means of discrimi-

nant analysis. We demonstrate its advantages in terms of robustness and e�ciency and

discuss a numerical realization to segment medical ultrasound images. Finally, we show

its superiority over the Chan-Vese method on real patient data from echocardiographic

examinations.

Optimal threshold by discriminant analysis

To challenge the problem of misclassification of pixels due to multiplicative noise (cf.

Section 4.5.1), we propose to use an established statistical approach to find an optimal

threshold tO. In this context, optimal refers to determining a threshold that minimizes

the within-class variance and maximizes the between-class variance between two classes

of pixels simultaneously. The idea is to apply discriminant analysis from statistics on

an image histogram and subsequently determine the optimal threshold. This approach

corresponds to the popular Otsu thresholding method in [148] for grayscale images.

Let us denote the number of pixels of a given grayscale image f with N and let

H : 256 �! [0, 1]

be the normalized histogram of this image. Then, H can be seen as a probability

distribution with H(i) = pi being the probability of intensity value 0  i  255.

Naturally, a threshold t 2 N, 0  t < 255, induces two grayscale intensity classes

C0 = {n 2 | n  t} , C1 = {n 2 | n > t} .

We denote the mean value of the whole image f by m and we use m0(t) and m1(t) for

the mean values of the two classes C0 and C1 (induced by threshold t), respectively.

Then, the intraclass variances of C0 and C1 are given by,

�2
0(t) =

t
X

i=0

pi(i � m0(t))
2 , �2

1(t) =
255
X

i=t+1

pi(i � m1(t))
2 . (4.91)
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(a) Multiplicative speckle noise
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(b) Adaption of thresholds

Fig. 4.20. E↵ect of noise variance �2 on an image histogram in (a) and the adaption

of the Otsu threshold tO compared to the Chan-Vese threshold tCV in (b).

Based on the intraclass variances in (4.91), one can define the global within-class variance

�W and the between-class variance �B by,

�W (t) = P0�
2
0(t) + P1�

2
1(t) , (4.92a)

�B(t) = P0(m0(t) � m)2 + P1(m1(t) � m)2 , (4.92b)

where P0 =
Pt

i=0 pi and P1 =
P255

i=t+1 pi represent the relative portions of the respective

classes. Finally, the optimal Otsu threshold tO can be computed by maximizing,

tO = argmax
0 t< 255

�B(t)

�W (t)
. (4.93)

Maximizing the fraction in (4.93) corresponds to finding a threshold t, which induces

an optimal relation of small within-class variance and large between-class variance. In

particular, Otsu shows in [148] that minimizing �W and maximizing �B can be achieved

simultaneously (because �B + �W equals to the overall variance of the image).

Figure 4.20a shows the impact of multiplicative speckle noise on an image histogram

according to the noise model in (3.9) with increasing noise variance �2. In Figure 4.20b

one can see how the Otsu threshold tO is adapted with increasing noise variance. As

already discussed in Section 4.5.1, signals with high intensity values get spread much

higher due to the multiplicative nature of speckle noise and hence the threshold tO shifts

to the left side of the histogram in Figure 4.20a, i.e., the value of tO in Figure 4.20b

decreases. In contrast to that, the threshold tCV induced by the Chan-Vese model (cf.

Section 4.5.1) stays constant for increasing noise variance �2, since it depends only on

the mean values of the respective signal distributions.
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In addition, Figure 4.18 illustrates that the threshold tO (blue line) separates the two

signal distributions significantly better than the Chan-Vese threshold tCV (red line).

This leads to less misclassification of intensity values for medical ultrasound images.

Therefore, we incorporate the threshold tO derived from discriminant analysis into a

novel variational segmentation formulation in the following.

Proposed variational segmentation model

Motivated by the observations in Section 4.5.1 and using the optimal threshold tO de-

rived from the discriminant analysis discussed above, we introduce a novel variational

segmentation formulation for medical ultrasound images in the following. Using the

notation from Section 4.5.1 the proposed segmentation model reads as,

E(�) =
1

2

Z

⌦

sgn(�(~x)) (f(~x) � tO) d~x + �

Z

⌦

�0(�(~x)) |r�(~x)| d~x . (4.94)

The idea of the model in (4.94) is to partition the given data according to the optimal

threshold tO introduced above using a linear distance measure. Analogously to the

Chan-Vese model, we enforce smoothness of the level set function � by minimizing its

total variation at the segmentation contour �. Since the threshold tO is fixed throughout

the segmentation process, one only has to minimize with respect to �, i.e., one has to

solve a minimal partition problem,

inf {E(�) | � 2 W 1,1(⌦) } . (4.95)

Note that the proposed model in (4.94) is not restricted on ultrasound data since it does

not explicitly model the noise perturbation as done, e.g., in Section 4.3. Furthermore,

it can also be easily extended to multiphase segmentation problems (cf. [206, 148]).

Remark 4.5.2 (Existence of minimizers). The existence of minimizers for the optimiza-

tion problem (4.95) is guaranteed, due to the convex relaxation results of Lemma 4.3.2.

By approximating the signum function in (4.94) by sgn(x) ⇡ 2H(x)� 1, we get an anal-

ogous formulation of a minimal surface problem as in (4.43), with �(~x) = H(�(~x)),

according to the notation in (4.19). With the help of Theorem 4.3.3, one can solve an

associated ROF denoising problem, and the unique minimizer of this problem is also a

minimizer to (4.95).

However, in the context of level set functions it gets clear that a minimizer �̂ of (4.95)

is not unique, as there exist many level set functions, which have the same zero-level set

� representing the final segmentation contour. Fixing �̂ to be a signed distance function

overcomes this problem.
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Numerical realization

Analogously to Section 4.5.1, we use level set methods to compute a solution for the

minimal surface problem (4.95), i.e., we use � as a level set function (cf. Definition

4.4.5). First, we approximate the signum function in (4.94) by sgn(x) ⇡ 2H(x) � 1.

This is valid since the zero-level set of �, i.e., {~x 2 ⌦ |�(~x) = sgn(~x) = 0}, is a null set

with respect to the Lebesgue measure (cf. Definition 2.1.28).

Denoting the integrand of E in (4.94) with f(x, u, ⇠) = f(x,�,r�) and using the

regularized functions in (4.87), the strong formulation of the Euler-Lagrange equation

(cf. Remark 2.3.16) for minimization of (4.95) in � can be deduced as,

0 =
n
X

i=1

@

@xi
[f⇠

i

(x, u, ⇠)] � fu(x, u, ⇠)

= �✏(�(~x))

✓

� div

✓

r�(~x)
|r�(~x)|

◆

� (f(~x) � tO)

◆

,

(4.96)

with the Cauchy boundary condition [33],

�✏(�(~x))

|r�(~x)|
@�

@~n
(~x) = 0 for all ~x 2 @⌦ ,

which has to be fulfilled by any minimizer �̂ of (4.95) almost everywhere on ⌦ with

respect to the Lebesgue measure.

We introduce an artificial temporal variable t to model the evolution of � (and thus the

segmentation contour �) as discussed in Section 4.4. To compute a stationary solution

to (4.96), i.e., @�
@t = 0, a forward Euler time discretization can be applied as discussed

in Section 4.4.3 and hence one gets the following iterative update,

�n+1(~x) = �n(~x) + �t �✏(�
n(~x))

✓

� div

✓

r�n(~x)

|r�n(~x)|

◆

+ tO � f(~x)

◆

.

As already mentioned in Section 4.5.1 it is reasonable in certain situations to exchange

the regularized �-Dirac measure �✏ by |r�| in order to expand the evolution of � in

normal direction from the segmentation contour � to all level sets (cf. Section 4.4), i.e.,

globally on ⌦. Then the iterative update reads as,

�n+1(~x) = �n(~x) + �t |r�n(~x)|
✓

� div

✓

r�n(~x)

|r�n(~x)|

◆

+ tO � f(~x)

◆

, (4.97)

and thus is directly related to (4.73) for

~V (~x) = (�(~x) + tO � f(~x)) ~N(~x) =

✓

� div

✓

r�(~x)
|r�(~x)|

◆

+ tO � f(~x)

◆

r�(~x)
|r�(~x)| .
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Algorithm 5 Proposed discriminant analysis based level set segmentation method
tO = computeOtsuThreshold(f) (4.93)
S = initializeIndicator(�) (4.81)
�0 = initializePhi(S) Algorithm 3
repeat

while k < M do
�t = computeCFL(tO, (�n)k, �) (4.98)
(�n)k+1 = updatePhi((�n)k,�t)) (4.97)

end while
�n+1 = reinitializePhi((�n)M) (4.75)

until Convergence

This can be interpreted as motion in normal direction controlled by both internal (mean

curvature) and external forces (data fidelity) as discussed in Section 4.4.2. In order to

control if the segmentation contour � expands or contracts during its evolution, one can

simply invert the sign of the level set function � during its initialization. The curvature

term in (4.97) can be approximated using (4.77) as introduced in Section 4.4.3.

The stability of the iterative update �n ! �n+1 is guaranteed for the associated

convection-di↵usion PDE [186, §6.4] by the Courant-Friedrich-Lewy condition using

Theorems 4.4.11 and 4.4.14,

�tmax
~x2⌦

(

n
X

i=1

|D(tO, f)(~x) �x
i

(~x)|
|r�(~x)|�xi

+
2�

(�xi)2

)

< 1 , (4.98)

for which D(tO, f)(~x) = f(~x) � tO denotes the data fidelity term.

Remark 4.5.3. In our situation of performing segmentation tasks on medical images,

the temporal step width �t can be given explicitly from the CFL condition (4.98) for

0 < ↵ < 1 and �x = 1 (isotropic spatial step width for image processing),

�t =
↵ |r�(~x)|

max
~x2⌦

|(f(~x)� tO||r�(~x)|1
+

↵

2n�
.

The proposed segmentation method is summarized in Algorithm 5. Here, M is the max-

imal number of inner iterations until � is reinitialized to a signed distance function, as

described in Section 4.4.3. This is recommended in specific situations as we discuss in

Section 4.5.3. The main di↵erence to the Chan-Vese realization is that after the deter-

mination of the optimal threshold tO, the inner loop in Algorithm 5 realizes only the

minimization of the minimal partition problem (4.95) in contrast to the alternating min-

imization scheme in Algorithm 4. This eases the problem of local minima, as discussed

in Section 4.5.1, significantly.
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(a) Initialization of � (b) Expansion of � (c) Convergence state of �

Fig. 4.21. Initialization, expansion and the stationary solution during the evolution

process (4.97) of the segmentation contour �.

Figure 4.21 illustrates three di↵erent states of the segmentation contour during its evo-

lution, using Algorithm 5 for a two-dimensional US B-mode image of the left ventricle

(LV) of a human heart in an apical four-chamber view. To delineate the endocardial

border of the LV, the segmentation contour � is initialized within the cavum, as shown in

Figure 4.21a. As can be seen in Figure 4.21b, � expands for every iterative update of �

according to (4.97). Note that the expansion slows down in regions with pixel intensities

near the optimal threshold tO, especially for the speckle noise artifact in the lower right

corner. However, since the proposed method is more robust than the Chan-Vese method,

the contour does not stop in those regions (cf. Figure 4.23). Algorithm 5 terminates

in the case of convergence as shown in Figure 4.21c. As we show in Section 4.5.3, this

segmentation result is very close to manual segmentations by echocardiographic experts.

4.5.3 Results

In this section we validate the proposed method from Section 4.5.2 on eight di↵erent 2D

US B-mode data sets from real examinations of the human heart imaged with a Philips

iE33 ultrasound system in di↵erent views, i.e., two-chamber, three-chamber, and apical

four-chamber views. We use this data, to demonstrate that it is possible to use the

proposed model for heterogeneous data from echocardiography. The segmentation task

for these images is to delineate the endocardial border of the left ventricle as echocar-

diographic experts would perform it during their manual measurements.

We compare the proposed model qualitatively and quantitatively with the traditional

Chan-Vese model from Section 4.5.1 with respect to robustness, e�ciency, and accuracy

of the respective segmentation algorithms .
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Qualitative comparison

To compare the traditional Chan-Vese segmentation method (Algorithm 4) with the

proposed segmentation method (Algorithm 5), we tested a huge range of parameters for

the two implementations, i.e.,

• maximum number of inner iterations until reinitialization M 2 [5, 5000] ,

• smoothness parameter � 2 [1, 2200] ,

• data fidelity weights for the Chan-Vese algorithm �1,�2 2 [0.5, 1.5] .

Since the proposed model is simpler and needs less parameters compared to the Chan-

Vese model, parameter testing could be performed much more e�ciently. During our

experiments we observed a significantly higher robustness in terms of parameter choice

for the proposed model in Section 4.5.2. While the proposed method gave satisfying

results for many parameter setups within the sampled range, the Chan-Vese method

converged only for a few parameter settings to reasonable segmentation results. Fur-

thermore, these feasible parameter setups could not be located in a close range, but

were spread over the whole parameter space. In contrast to that we could observe a

good correlation between the parameters � and M for the proposed method, i.e., we

found the best segmentation results when the maximum number of inner iterations un-

til reinitialization of � was chosen as M 2 [�2 ,
3�
2 ]. This observation is constituted by

the choice of the temporal step width �t with respect to the CFL stability condition

(4.98). Note that choosing the maximum number of inner iterations M too high leads

to unwanted topological changes and an expansion of the segmentation contour over

anatomical structures in regions of low contrast (e.g., apical part and mitral valve of left

ventricle in Figure 4.22). Thus, frequent reinitialization is recommended for level set

segmentation of medical ultrasound data.

We could observe that the standard parameter choice �1 = �2 for the Chan-Vese method

is suboptimal for medical ultrasound images. This is reasonable, due the impact of mul-

tiplicative speckle noise as discussed in Section 4.5.1. However, if we selected these two

parameters such that their ratio was �1

�2
< 0.7, we could observe that the labels of the

subregions ⌦1 and ⌦2 tend to switch during the evolution process of �. Thus, for these

parameter settings we were not able to perform a segmentation of the cavum of the left

ventricle, but only for the tissue of the myocardium.

As already indicated in Section 4.5.1 the traditional Chan-Vese method is in general

prone to convergence to unwanted local minima. Due to the interconnection of the two

subproblems in (4.86), the result of the alternating minimization strongly depends on

the initialization of �.
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(a) 1

st Initialization at

septal wall of LV

(b) 2

nd Initialization

in cavum of LV

(c) CV segmentation

for (a) and (b)

(d) Our segmentation

for (a) and (b)

Fig. 4.22. Di↵erent initializations of � within an US B-mode image of the left

ventricle (LV) of a human heart and the respective segmentation results of the

Chan-Vese (CV) model and the proposed model (Our).

As illustrated in Figure 4.22 the proposed method is very robust in terms of initialization,

due to the fact than one only has to solve a minimal partition problem and thus avoids

unwanted local minima. In Figure 4.22a and 4.22b we show two di↵erent initializations

of the segmentation contour � at the septal wall and in the cavum of the left ventricle,

respectively. Both initializations lead for the Chan-Vese method to a local segmentation

of the septal wall tissue (bright region) as can be seen in Figure 4.22c. While this is

reasonable for the first initialization, the result for the second initialization is unwanted,

since most pixels in the inside region of � belong to the dark background. The proposed

method on the other hand leads in both cases to the same segmentation in Figure 4.22d,

which delineates the inner contour of the left ventricle as required. In order to segment

the myocardial tissue similar to Figure 4.22c, one has to invert the sign of � during its

initialization as discussed in Section 4.5.2.

Finally, we want to compare the data fidelity of both models on the given data. Figure

4.23 gives a direct comparison of the values of the data fidelity terms of the Chan-Vese

formulation (4.84) and the proposed model (4.94) for real US B-mode images from a

human left ventricle (LV) in an apical four-chamber view. In Figure 4.23a one can see

the data fidelity for the Chan-Vese model, which is computed using the mean values of

the respective regions after an acceptable segmentation of the LV in Figure 4.23c. As

can be seen, the integrand of the L2 data fidelity terms of the Chan-Vese method leads

to high values, especially for outliers induced by speckle noise in the cavity of the left

ventricle. In contrast to that, the proposed model gives a much smaller range of values

for the data fidelity term as shown in Figure 4.23b. This is natural, since we use a

linear distance measure as data fidelity term. Furthermore, the Otsu threshold induces

a significantly less missclassification of pixels (in particular for speckle noise artifacts)

and thus leads to better segmentation results as indicated in Figure 4.23e.
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Fig. 4.23. Direct comparison of data fidelity and segmentation results for the

Chan-Vese model and the proposed model.

To observe this last fact even better, we show the thresholded data fidelity terms to

indicate pixels with non-negative value (white pixels) and negative value (black pixels)

of the Chan-Vese model and the proposed model in Figure 4.23d and 4.23f, respectively.

As can be clearly seen, the speckle noise artifacts in the upper left and lower right part

of the cavum have a less severe impact on the data fidelity of the proposed method

compared to the Chan-Vese model.

This leads to a more robust and accurate segmentation performance as we show in

quantitative measurements below.

Quantitative comparison

In order to measure the segmentation performance of the proposed method compared

to the Chan-Vese segmentation algorithm, we asked two echocardiographic experts to

manually segment the eight given data sets. We use the Dice index introduced in Section

4.3.7 to compare two segmentation results A,B and quantify the segmentation perfor-

mance of both algorithms.
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(a) Data set 2 (b) 1

st manual segmentation (c) 2

nd manual segmentation

(d) Initialization (e) Chan-Vese segmentation (f) Our segmentation

Fig. 4.24. Segmentation results of the Chan-Vese algorithm and the proposed

method (our) compared to the manual delineations of two medical experts.

We globally optimized the parameters of the two segmentation algorithms with respect

to the maximum average Dice index on all eight data sets, using the two respective

expert delineations as ground truth. For the Chan-Vese algorithm we found the best

parameter setup for �1 = 1,�2 = 0.7, � = 500, and M = 10. In contrast to that, the

best parameters for the proposed method were determined as � = 95 and M = 30.

In Figure 4.24b and 4.24c one can see the manual delineations of the two echocardio-

graphic experts for an US B-mode image of the left ventricle (LV) in an apical four-

chamber view. Both, the Chan-Vese algorithm and the proposed method are initialized

with the segmentation contour � as illustrated in Figure 4.24d and converge to the seg-

mentation results shown in Figure 4.24e and 4.24f, respectively.

Naturally, the contour of the Chan-Vese algorithm stops in regions perturbed by speckle

noise due to misclassification of pixel intensities, as discussed in Section 4.5.1. Hence,

this method produces unsatisfying segmentation results compared to the manual delin-

eations. The proposed model overcomes these problems and turns out to be significantly

more robust in the presence of speckle noise as can be seen in Figure 4.24.
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(a) Data set 4 (b) 1

st manual segmentation (c) 2

nd manual segmentation

(d) Initialization (e) Chan-Vese segmentation (f) Our segmentation

Fig. 4.25. Segmentation results of the Chan-Vese algorithm and the proposed

method (our) compared to the manual delineations of two medical experts.

Similar results can be observed for another US B-mode image of the left ventricle (LV)

in an apical four-chamber view in Figure 4.25. Compared to the manual delineations

of the two echocardiographic experts in Figure 4.25b and 4.25c the proposed method

(Figure 4.25f) performs significantly better compared to the Chan-Vese method (Figure

4.25e).

This observation could be confirmed for all eight data sets as indicated by Table 4.5.

The average segmentation performance of the Chan-Vese method with respect to the

Dice index is 0.8503, while the proposed method reaches 0.8791. The average inter-

observer variability on these eight data sets is 0.9174. In conclusion, the proposed

method performs better than the Chan-Vese method on medical ultrasound images.

Dataset 1 2 3 4 5 6 7 8

Observer variability 0.9217 0.9265 0.8906 0.8954 0.9083 0.9348 0.9201 0.9414

Chan-Vese model 0.8731 0.9075 0.7551 0.9278 0.8229 0.7551 0.8674 0.8942
Proposed model 0.8803 0.9443 0.8132 0.9254 0.8401 0.8172 0.8934 0.9192

Table 4.5. Dice index values for comparison with manual segmentation.



142 4 Region-based segmentation

We observed that the Chan-Vese algorithm (⇠ 50s) needs less time for performing seg-

mentation compared to the proposed methods (⇠ 110s) for images of size 240 ⇥ 180

pixels on a 2.26GHz Intel Core 2 processor with 4GB RAM and Mathworks Matlab

(2010a), and using the optimized parameters indicated above.

However, if one uses �1 = �2 for the Chan-Vese model, the regularization parameter �

has to be chosen accordingly higher and one gets very strict CFL conditions (4.90) for

the temporal time discretization of the Chan-Vese method and thus a slower convergence

of the iteration scheme (⇠ 120s). Hence, it is di�cult to give a general statement on the

performance, since the runtime directly depends on the chosen parameters.

When reinitializing the signed distance function more frequently and simultaneously vi-

olating the CFL conditions, we were able to speed up both methods by a factor of ⇠ 4

and perform segmentation in 12s�18s without numerical errors. However, note that in

general one must obey the CFL conditions to guarantee stability of the iteration scheme.

A possibility to decrease the runtime further, is to update the signed distance function

� not globally on ⌦, but only in a narrow band around the contour � (see [146]).

Limits of the proposed model

Naturally, both the Chan-Vese method from Section 4.5.1 and the proposed method from

Section 4.5.2 cannot be used universally for all segmentation tasks in medical ultrasound

imaging. Since both realizations are categorized as low-level segmentation methods,

i.e., segmentation only based on image intensities, they lead to erroneous segmentation

results in specific situations. First, one can expect problems when the data is heavily

perturbed by physical e↵ects, e.g., shadowing e↵ects or multiplicative speckle noise as

discussed in Section 3.3. Second, ultrasound imaging under suboptimal conditions can

lead to missing anatomical structures within the data, such that the region-of-interest

is not closed anymore. Hence, any low-level segmentation algorithm would also segment

misleadingly connected regions.

Figure 4.26 gives two examples for the limit of the proposed segmentation model. Due

to the perturbation of an US B-mode image of the left ventricle in a two-chamber view

by shadowing e↵ects the anterior wall (right side in image) and the mitral valve (center

bottom in image) are only partly visible in Figure 4.26a. Thus, the segmentation contour

expands out of the left ventricle and leads to an unsatisfying segmentation result.

Figure 4.26b illustrates the problem of US imaging in a suboptimal angle of an apical four-

chamber view of the left ventricle. Here, no shadowing e↵ects occur and all endocardial

contours give a relatively high contrast for segmentation. However, due to a suboptimal

imaging plane, the mitral valve (center bottom of image) is only imaged partly and thus

does not appear to be closed. This leads eventually to a segmentation of the connected
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(a) Erroneous segmentation result due to

shadowing e↵ects

(b) Erroneous segmentation result due to

missing anatomical structures

Fig. 4.26. Erroneous segmentation results of the proposed method due to missing

anatomical structures and shadowing e↵ects illustrate the limits of this model.

left atrium by mistake. Note that this problem also arises even for high values of the

smoothness parameter � in (4.94).

In order to successfully segment medical ultrasound images that su↵er from the two

problems indicated above, one needs additional information about the data. This mo-

tivates the incorporation of a-priori knowledge about the shape of the left ventricle in

Section 5 of this work.

4.5.4 Discussion

We proposed a novel variational model for two-phase segmentation tasks in this section.

Motivated by the problems arising for the traditional Chan-Vese model, when applied

for medical ultrasound data, we deduced a segmentation formulation that accounts for

the characteristics of multiplicative speckle noise, while simultaneously reducing the

complexity of the problem formulation. By formulating a special case of the minimal

partition problem and realizing it with the help of level set methods we ca avoid un-

wanted local minima in contrast to the Chan-Vese model. Since the proposed model is

quite simple, parameter training and optimization is more e�cient than for the Chan-

Vese method. On a direct comparison of both algorithms for real patient data from

echocardiographic examinations we observed that the proposed method performs sig-

nificantly better in terms of robustness and segmentation accuracy than the Chan-Vese

method and achieved a higher average Dice index when compared with manual delin-

eations from experienced physicians.
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The reason for this improvement is the incorporation of an optimal threshold by means

of discriminant analysis, which also respects the signal-dependent noise variance of the

image intensity distributions. Additionally, the use of a linear distance measure, in con-

trast to the common L2 data fidelity term of the Chan-Vese model, further increases

the robustness under outlier pixels. For the globally optimized parameter settings the

Chan-Vese method performed better in terms of computational e↵ort. However, in gen-

eral both methods show similar run-times since Algorithm 4 and 5 have a analogous

structure. Finally, we investigated typical cases for which both models are not feasible

and lead to erroneous segmentation results. This motivates the incorporation of further

a-priori knowledge of the data, e.g., shape information.

Although we tested both segmentation algorithms from this section on real 3D US data

of the human heart captured with a X11 transducer of a Philips iE33 imaging system,

we could only observe a marginal improvement in the segmentation results using the

proposed segmentation model. We suppose that this observation is due to the di↵erent

imaging technique (cf. Section 3.2), which does not capture the three-dimensional data

instantly, but fuses parts of the imaged volume over a period of several heart beats (⇠7

beats). Thus, the statistics are completely di↵erent for this kind of data. Furthermore,

the contours in this data set appeared very much delineated and less e↵ected by multi-

plicative speckle noise compared to US B-mode images captured with the same device.

This leads us to the assumption, that also the internal preprocessing steps di↵er from

the standard situation of two-dimensional data.

A possible extension of the proposed model in Section 4.5.2 would consider an adapted

version of the discriminant analysis described in this work. In particular, one could

exchange the definition of the intraclass variances in (4.91) by weighted variants, i.e.,

�2
0(t) =

t
X

i=0

pi
(i � m0(t))2

m0(t)
, �2

1(t) =
255
X

i=t+1

pi
(i � m1(t))2

m1(t)
. (4.99)

This adaption is motivated by the observation of di↵erent signal distribution variances

depending on the unbiased signal intensity (cf. Loupas noise model in Section 3.3.1).

First experiments showed an improvement for the estimation of an optimal threshold tO

as discussed in Section 4.5.2.

However, the overall segmentation performance degraded by using this modified thresh-

old in our segmentation formulation in (4.94). The reason for this is that the new

threshold led in some cases to the fact, that speckle noise artifacts within the cavum

of the left ventricle were wrongly classified as tissue region similar to the Chan-Vese

method in Figure 4.23c. Thus, further investigations are needed to adapt the proposed

method to medical ultrasound data more explicitly.
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5
High-level segmentation with shape priors

In this chapter we investigate the impact of physical noise modeling on high-level seg-

mentation using shape priors. The main question in this context is, if it is profitable to

perform physical noise modeling next to the incorporation of a-priori knowledge about

the shape to be segmented. For this reason we extend the low-level segmentation models

from Chapter 4 by adding a shape prior based on Legendre moments. We evaluate the

impact of physical noise modeling on high-level segmentation qualitatively and quanti-

tatively on real patient data from echocardiographic examinations and demonstrate that

appropriate data fidelity terms lead to increased segmentation robustness and accuracy.

5.1 Introduction

Segmentation of medical ultrasound images is a di�cult task due to the impact of

di↵erent physical e↵ects discussed in Section 3.3, e.g., multiplicative speckle noise. As

we observed for low-level segmentation methods like the Mumford-Shah and Chan-Vese

model in Section 4, it is advantageous to incorporate a-priori knowledge about the

characteristics of the image modality. Although this procedure is e↵ective in the case

of image noise, it is not su�cient for regions with structural artifacts, e.g., shadowing

e↵ects or low contrast regions in US data as described in Section 4.5.3. This special

situation occurs regularly in clinical routine, e.g., when US waves get reflected by ribs

during echocardiographic examinations of the human heart. Thus, development of a

segmentation algorithm that can automatically segment the LV of the myocardium in

the presence of the mentioned e↵ects is of great interest to cardiologists.

In order to tackle this challenging problem, the incorporation of high-level information,

such as prior knowledge about the shape to be segmented, has proved to be feasible.

The idea of using two-dimensional models of expected objects in images to support
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segmentation tasks is known since the early 1990s, e.g., the popular active shape model

in [40]. Here, single templates were used as model for comparison, which is su�cient

for industrial applications, due to the highly standardized fabrication methods of mass-

production. However, using only one representation of an object as representative for a

whole class of objects leads in general to an oversimplification of reality. In particular

applications from biology and medicine require significantly more information on the

subject of interest, due to its natural variability.

Note that we focus on using shape information as a-priori knowledge for computer

vision tasks, such as segmentation. However, this is only one possible option for shape

information and orthogonal topics such as shape analysis and shape spaces are active

fields of research. The task in these fields is to find new ways to encode shapes, identify

them in given data, and compare them to a set of reference shapes. For a general

introduction to statistical shape analysis and shape spaces we refer to [58, 59, 68].

In Section 5.2 we give di↵erent possibilities for encoding and comparison of high-level

information and we are particularly interested in moment-based shape descriptors, e.g.,

Legendre moments, since they o↵er certain advantages for high-level segmentation tasks.

Additionally, we give a short overview of high-level segmentation methods that have

been reported as being successfully used in medical imaging and in particular in medical

ultrasound imaging. In Section 5.3 we incorporate high-level information by means of a

shape prior into the low-level segmentation methods proposed in Section 4.3 and 4.5, i.e.,

the variational region-based segmentation framework and the discriminant-based level

set method, respectively, and validate both realizations qualitatively and quantitatively

on real patient data.

5.2 Concept of shapes

Shape recognition plays an important role in human visual perception. According to psy-

chologists, human vision identifies shapes by grouping of features in visual perception

based on similar attributes [70, §14.2]. Shapes are not only important for recognition

and awareness of objects in visual perception, but form a fundamental aspect in visual

interpretation of the observed scenery [164]. Inspired by these observations, shape rep-

resentation and comparison became an active field of research in mid- and high-level

computer vision. Analogously to human vision, this concept supports object detection

and image interpretation in a wide range of applications.

Before we discuss the details of shape analysis, it is important to understand how the

term ’shape’ is defined in the context of computer vision and mathematical image pro-
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Fig. 5.1. A star-shaped object in three di↵erent poses.

cessing. It turns out that it is not convenient to give an exact mathematical definition

for a shape in terms of specific sets within the image domain, since the term ’shape’

can also include meta-information, e.g., the perimeter length or the property of ellip-

ticity. Due to the fact that the concrete description and comparison of shapes di↵ers

from application to application, we introduce a relatively weak but su�cient definition

of shapes as given in [58]. We elaborate this term in later sections more specifically, i.e.,

for moment-based shape representation in Section 5.2.2.

Definition 5.2.1 (Shape). A shape is defined as all the geometrical information of an

imaged object which are invariant under certain registration transformations.

The geometric description of an imaged object can be decomposed into its shape and

a transformation which describes the pose of that object within the scenery [58]. In

general there are di↵erent assumptions about these registration transformations and

also di↵erent ways to determine them. Typical transformations assumed in computer

vision tasks are Euclidean transformations and a�ne transformations. Note that the

latter ones are a more general class of transformations and include a wider range of pose

changes, e.g., shearing. This makes them in general harder to determine in computer

vision tasks and leads to additional unknown variables. Following these observations,

it gets clear that one has to consider the pose of entities in order to compare shapes

with each other. For this reason many approaches share the general idea of normalizing

shapes, e.g., by a translation to the center, rescaling to a defined range, and rotating

the shape according to its principal axes [42]. To achieve this, two di↵erent concepts are

used in the literature: first, one estimates the pose parameters by means of a registration

transformation, e.g., in [40, 103, 115, 165, 166, 200, 228]. Second, one computes invari-

ant shape descriptors intrinsically, e.g., as proposed in [42, 73, 104, 109, 183]. Note that

the latter approach yields several advantages, such as less parameters to be determined.

Figure 5.1 shows a black star-shaped object in three di↵erent poses. According to

Definition 5.2.1 all three entities have the same shape, but are described by di↵erent

registration transformations with respect to a reference shape. Denoting the first rep-
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resentation as reference shape, the second object can be obtained by a simple scale and

rotation transformation, i.e., an Euclidean transformation. The third representation is

obtained by a shearing, which is a special case of an a�ne transformation and thus more

complex to describe mathematically.

In Section 5.2.1 we give an overview of popular approaches for shape description and

discuss features that can be deduced from shapes. We focus on shape description by

moments in Section 5.2.2, since this concept has reasonable arguments for its use in

computer vision applications, e.g., medical imaging. In Section 5.2.3 we investigate

possible ways to incorporate high-level information into segmentation models by means

of a shape prior. Finally, we give an overview of successfully implemented segmentation

methods from medical image analysis using shape information to increase segmentation

robustness in Section 5.2.4.

5.2.1 Shape descriptors

In the literature there are many known approaches to encode the shape of objects within

images with the help of descriptors (cf. [94], [184, §8], [225], and references therein).

Representation and measurements based on shapes are a fundamental part of shape

analysis and also play an important role in medical image analysis. For example, by

measuring the variance in shapes of anatomical structures, physicians can identify rel-

evant parameters for pathological findings in medical imaging [94]. In general, one can

divide the proposed methods in literature into region-based and contour-based shape

descriptors. Within these two classes there are di↵erent paradigms to describe objects

based on their shape representation. In Figure 5.2 we give an overview of di↵erent

possibilities for shape description and representation inspired by [225].

Contour-based methods

On the one hand, contour-based methods try to describe the shape of an object by its

boundary information. Typical structural approaches try to break the contour into

sub-parts and analyze them with respect to certain criteria. One example for such an

approach is based on the idea of discretizing the surface of an object by line segments

and approximating it by a polygon, e.g., in [87]. Each primitive gets associated with a

four element vector describing two-dimensional coordinates, angle, and distance to the

next primitive. Computed shape descriptors are compared using the editing distance.

Global approaches calculate a feature vector of the integral boundary directly and use

metric distances to compare the resulting numerical feature vectors. Common features
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Shape description

region-based methods contour-based methods

...

structuralglobalstructural global

Area
Eccentricity
Euler number
Legendre moments
Zernike moments
...

Convex hull
Core
Media axis
...

Fourier descriptors
Hausdor↵ distance
Perimeter
Scale space
Wavelet descriptors
...

B-spline
Chain code
Polygon
...

Fig. 5.2. Overview of shape description methods inspired by [225].

computed from the image boundary are eccentricity, convexity, sigmoidality, rectangu-

larity, circularity, and ratio of principle axis [155]. For a review of these rather simple

descriptors we refer to [164]. Another prominent contour-based approach uses Fourier

descriptors to describe the boundary of a shape, e.g., in [118]. In general, the boundary

has to be closed for this method since the Fourier series is only defined for periodic func-

tions. The contour is also approximated by line segments, but in contrast to the polygon

method, the connection points are used to compute Fourier coe�cients. The order of

this Fourier series approximation defines the accuracy of the descriptor and the coe�-

cients can be used to compare di↵erent shapes by metric distances. Fourier descriptors

are invariant under Euclidean transforms and hence attractive for many applications in

computer vision, e.g., sketch matching in [180, §8.4.3]. For an illustrative introduction

to Fourier descriptors we refer to [89, §2].

Region-based methods

On the other hand, region-based techniques take all the pixels within a shape region into

account to obtain the shape representation and hence are more robust to noise compared

to contour-based approaches [225]. Within this class the structural approaches decom-

pose a shape region into subparts in order to respresent and compare these, similar to

the structural contour-based approaches discussed above. Often, the idea of these ap-

proaches is to obtain locally convex parts. As an example, one tries to subdivide a shape

region according to the deficiencies with respect to its convex hull. The convex hull is

the smallest convex set containing the shape region and can be computed, e.g., by using

boundary tracing methods [184, §8.3.3]. Approximating the boundary by line segments
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as preprocessing step can decrease the computational e↵ort for computing a convex hull

by order one [225]. Subsequently, the shape is represented as a concavity tree containing

all recursively computed subregions, which are convex.

Global region-based shape descriptors are the most preferable choice for computer vision

tasks, since they give compact features, are generally applicable, have low computational

complexity, and most important, a robust and accurate retrieval performance for shapes

[225]. Typical representatives of this class are moments, which we discuss in more detail

in Section 5.2.2.

5.2.2 Moment-based shape representations

As indicated in Section 5.2.1, moment-based shape representation can be classified as a

global region-based shape description approach, i.e., all pixels within the shape region are

used for the computation of a shape descriptor based on moments. Historically, the first

notable application of moments for pattern recognition tasks has been proposed by Hu

in [104]. Moments are numerical values which can be used to analytically characterize a

function and thus have the potential for encoding and compression tasks (cf. [151, 160]).

In general, moments can be obtained by the evaluation of properly chosen base functions

on the image domain. Depending on the selection of these functions, one can compute

di↵erent moment-based representations, e.g., geometric moments or Legendre moments

(see discussion below).

Another advantage of moment-based shape representation is that the corresponding

mathematical theory is well-investigated. For most moment-based representations there

exist formulations which make the resulting shape descriptor invariant under Euclidean

transformations (cf. Definition 5.2.1).

Similar to the encoding by Fourier descriptors discussed above, any L1(⌦) function

f : ⌦! R can be transformed into its corresponding moment-based representation and

reconstructed loss-less, if one uses infinitely many moments for encoding [191, 193].

However, in real-world applications one can only use a finite number of moments, which

inevitably leads to loss of information. In practice, the order N 2 N of used moments

is chosen large enough to encode the given shape without losing important details and

thus guarantee acceptable reconstruction errors.

Figure 5.3 illustrates the e↵ect of di↵erent orders N of Legendre moments used for

encoding a star-shaped object on the reconstructions. As can be seen in Figure 5.3b,

using moments of order N = 5 leads to a massive loss in shape details compared to the

original shape in Figure 5.3a. With increasing order N the reconstruction of the shape

by its Legendre moment-based representation gains details as illustrated in Figure 5.3c
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(a) Original shape. (b) Reconstruction

with N = 5.

(c) Reconstruction

with N = 15.

(d) Reconstruction

with N = 40.

Fig. 5.3. Reconstruction from Legendre moments. (a) Original star-shaped object.

(b)-(d) Di↵erent reconstructions of the star shape in (a) from a finite number N of

Legendre moments.

and 5.3d for N = 15 and N = 40, respectively. It is reasonable to use a order of moments

lower than N ⇠ 100, since higher order moments get increasingly susceptible to noise

and hence produce erroneous reconstructions for real images [194].

In accordance with the notation from Section 4, let ⌦1 ⇢ ⌦ be the inside region of a

given shape. A typical assumption in the literature is that the image domain is contained

in the unit rectangle, i.e., ⌦ ⇢ [�1, 1]2. Using this convention, higher-order moments

will in general have increasingly smaller numerical values, which is advantageous for

the convergence properties during reconstruction from moments [193]. In this work we

identify a shape representing a region ⌦1 ⇢ ⌦ by its characteristic function following the

notation in Section 4.3,

�(~x) =

8

<

:

1 , if ~x 2 ⌦1 ,

0 , else .
(5.1)

Although moments can be computed for both binary as well as gray-scale images, we use

the binary representation in (5.1) in order to formulate the high-level segmentation task

as a geometrical problem later in Section 5.4.1. An e�cient algorithm for contour-based

computation of moments is given by Jiang and Bunke in [109].

In the following, we focus on three di↵erent moment-based shape descriptors for two-

dimensional images, i.e., geometric moments, Legendre moments, and Zernike moments.

Note that the computation of moments is not restricted to 2D data and there exist alter-

native moment-based representations in the literature, e.g., Chebyshev moments [160].

However, we restrict ourselves to the latter three approaches as they are most commonly

used for computer vision tasks and have already been evaluated comparatively, e.g., in

[194].
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Geometric moments

Geometric moments are the simplest moments used for shape representation in the

literature and are rather easy to implement (cf. [184, §8.3.2] and references therein).

However, they are closely related to other moment-based representations, e.g., Legendre

and Zernike moments. In this context, their computation o↵ers several advantages as

discussed below.

Definition 5.2.2 (Geometric moments). Let p, q 2 N0 and let � : ⌦! {0, 1} be a given

shape. The geometric moments mp,q(�) of order N = p+ q are defined as,

mp,q(�) =

Z

⌦

�(x, y) xpyq dxdy =

Z

⌦1

xpyq dxdy , (5.2)

i.e., the integral on ⌦1 of any two-dimensional monomial with exponent sum smaller or

equal to N .

From the representation in (5.2), it gets clear that one can deduce simple shape descrip-

tors (for the binary case) by using only geometric moments of order N  1, e.g.,

m0,0(�) =

Z

⌦

�(x, y) x0y0 dxdy =

Z

⌦1

dxdy ,

encodes the area of the shape represented by �. Furthermore, one can compute the

center-of-mass (xc, yc) for a shape by,

xc =
m1,0

m0,0
, yc =

m0,1

m0,0
. (5.3)

Since geometric moments of order p+q  N depend on translation, scaling, and rotation,

one has to adapt the computation formula in (5.2) to account for pose changes of shapes

discussed at the beginning of Section 5.2. By translating the shape’s center-of-mass in

(5.3) to the origin, one gets central geometric moments by,

mc
p,q(�) =

Z

⌦

�(x, y) (x� xc)
p(y � yc)

q dxdy . (5.4)

As the centralized geometric moments mc
p,q of order p+ q  N are translation-invariant,

one can use them to deduce normalized central moments by,

⌘p,q =
mc

p,q

(m0,0)�
, (5.5)

where � = p+q
2 + 1 is a normalization constant.
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To achieve rotational invariance there exist di↵erent ways: first, one can use closed-form

invariants based on geometric moments up to a certain order, e.g., as proposed by Hu in

[104] or even a�ne-invariant moments proposed by Foulonneau et al. in [72]. Another

option is to explicitly estimate the rotational angle of the shape and subsequently rotate

the shape to a reference coordinate system as performed, e.g., in [103, 115, 165, 228].

In order to overcome numerical errors due to the integration in (5.2), Hosny in [100]

and Chong et al. in [37] propose an e�cient and exact algorithm for the computation

of geometric moments by evaluating the monomials at the upper and lower integration

limits for each pixel in a pre-computable kernel.

In the setting of a discrete shape �, which is given for a set of pixels (xi, yj), i = 1, . . . , N ,

j = 1, . . . ,M , with isotropic grid width h > 0, one can approximate (5.2) by,

mp,q(�) =
N
X

i=1

M
X

j=1

Z x
i

+h

2

x
i

�h

2

Z y
j

+h

2

y
j

�h

2

xpyq dxdy �(xi, yj) .

Instead of evaluating the double integral for each pixel (xi, yj) numerically, e.g., by apply-

ing Simpson’s rule, the authors in [37, 100] propose to compute the integral analytically,

which is possible in an exact way for the monomials. Hence, one has to compute the

following expression for an exact computation of geometric moments,

m̂p,q(�h) =
N
X

i=1

M
X

j=1

Ip(xi)Iq(yj)�(xi, yj) , (5.6)

for which the exact integrals Ip, Iq are given as,

Ip(xi) =

Z x
i

+h

2

x
i

�h

2

xp dx =
1

p + 1

⇥

(�1 + ih)p+1 � (�1 + (i� 1)h)p+1
⇤

,

Iq(yj) =

Z y
j

+h

2

y
j

�h

2

yq dy =
1

q + 1

⇥

(�1 + jh)q+1 � (�1 + (j � 1)h)q+1
⇤

.

The (direct) use of geometric moments for computer vision tasks is rather uncommon,

since they bear many disadvantages to other moment-based representations. First, it is

well-known that the inverse problem of reconstructing a function from a finite number

of geometric moments is ill-posed. If A denotes the operator assigning a function f its

corresponding sequence of moments (mi,k)i,k2N, one can show that A is a linear operator

for which an inverse operator exists. However, this inverse operator, representing the

reconstruction from a set of moments, is not continuous [191] (cf. Definition 2.2.2).

Furthermore, for a fixed order of moments N , it is possible to obtain a continuous

function g 2 C0(⌦) whose moments exactly match those of f up to the given order N .
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As one has to solve a set of coupled algebraic equations to obtain g, already determined

coe�cients have to be calculated again, if one increases the order of moments N used

for reconstruction [193].

Finally, reconstructing a function f from a finite number of geometric moments involves

inverting an ill-conditioned Gram matrix of nearly parallel vectors. The reason for this

problem is that the chosen base functions for geometric moments, i.e., the monomials

in (5.2), are non-orthogonal and hence not optimal for encoding a given function by its

corresponding moments [73]. This motivates the use of orthogonal base functions such

as Legendre polynoms, which we discuss in the following.

Legendre moments

To overcome the ill-posedness of the inverse reconstruction problem of geometric mo-

ments discussed above, it is straightforward to exchange the set of base functions from

simple monomials to a set of orthogonal functions. An appropriate set of base func-

tions is given by the Legendre polynomials, as proposed in [193]. It is well-known that

Legendre polynomials form a complete orthogonal base of the Hilbert space L2((�1, 1))

together with the L2 inner product h·, ·i [5, §7], i.e.,
Z 1

�1

!(x)Pn(x)Pm(x) dx =
2

2n + 1
�nm , (5.7)

for all m,n 2 N0 and the constant weighting function ! ⌘ 1. Here, �nm denotes the

Kronecker delta for n andm. The Legendre polynomial Pn of order n on the unit interval

[�1, 1] is compactly given by the Rodrigues formula [191],

Pn(x) =
1

2n n!

dn

dxn
(x2 � 1)n , (5.8)

and has rational coe�cients, i.e., Pn 2 Q[X].

Definition 5.2.3 (Legendre moments). Let p, q 2 N0 and let � : ⌦ ! {0, 1} be a given

shape. The Legendre moments Lp,q(�) of order N = p+ q are defined as,

Lp,q(�) = Cp,q

Z

⌦

�(x, y)Pp(x)Pq(y) dxdy , (5.9)

for which Cp,q =
(2p+ 1)(2q + 1)

4 is a normalization factor.

Legendre moments guarantee an optimal reconstruction with respect to the minimization

of the mean square error [73].
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Instead of expressing the Legendre polynomials using Rodrigues formulation in (5.8) and

computing the integral in (5.9) directly, one can use a linear relationship to geometric

moments mu,v from (5.2), i.e.,

Lp,q(�) = Cp,q

p
X

u=0

q
X

v=0

ap,uaq,v mu,v(�) , (5.10)

where ai,j are the Legendre coe�cients given by [38],

ai,j = (�1)
i�j

2
1

2i
(i + j)!

�

i�j
2

�

!
�

i+j
2

�

! j!
for (i� j) mod 2 ⌘ 0 , (5.11)

and any ai,j = 0 if (i � j) mod 2 ⌘ 1. This relationship is induced by the fact that

one obtains Legendre polynomials by summing up all monomials up to order N , apply-

ing the Gram-Schmidt orthogonalization process [5, Remark 7.19] and demanding that

Pn(1) = 1 for any n 2 N0 [191, 193].

From the representation in (5.11), it gets clear that the computational costs raise sig-

nificantly with increasing order of moments N . For this reason, it is necessary to use a

recurrence relation to bypass the factorial terms. It is well-known that Legendre poly-

nomials of order (n+ 1) can be expressed recursively based on Legendre polynomials of

lower order [38, 102], i.e.,

Pn+1(x) =
2n + 1

n + 1
xPn(x) � n

n + 1
Pn�1(x) . (5.12)

Using this recursive relationship of the Legendre polynomials, we are able to prove

that one can incrementally compute the Legendre coe�cients ai,j (as mentioned in [191]

for shifted Legendre polynomials) and thus avoid numerical problems due to the large

factorial terms in (5.11).

Theorem 5.2.4. Let Pn 2 L2((�1, 1)) be any Legendre polynomial of order n 2 N,
which can be written as,

Pn(x) =
n
X

k=0

an,kx
k , (5.13)

where the an,k 2 Q, k = 0, . . . , n, are the corresponding Legendre coe�cients. Then the

coe�cients for the Legendre polynomial Pn+1 of order (n+1) can be computed iteratively

by,

an+1,k =
2n+ 1

n+ 1
an,k�1 � n

n+ 1
an�1,k , (5.14)

for n, k 2 N with (n+ 1) � k and (n� k) mod 2 ⌘ 1.
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Proof. We show the recursive dependency of the Legendre coe�cients in (5.14) by math-

ematical induction.

We investigate the base case n = 1, k = 0 and n = 1, k = 2, for the coe�cients of

the Legendre polynomial P2(x) of order N = (n + 1) = 2. Due to the fact that all

Legendre polynomials have to fulfill Pm(1) = 1 for all m 2 N0 as discussed above, it

follows directly that the constant polynomial is given by P0(x) ⌘ 1 and thus a0,0 = 1.

Due to the orthogonality property in (5.7), it is also clear that P1(x) = x for x 2 [�1, 1]

and a1,1 = 1. Based on this we can approve the assertion for,

a2,0
(5.14)
=

2 + 1

1 + 1
a1,�1
|{z}

=0

� 1

1 + 1
a0,0
|{z}

=1

= �1

2
(5.11)
= (�1)

2�0
2

1

22
(2 + 0)!

�

2�0
2

�

!
�

2+0
2

�

! 0!
,

a2,2
(5.14)
=

2 + 1

1 + 1
a1,1
|{z}

=1

� 1

1 + 1
a0,2
|{z}

=0

=
3

2
(5.11)
= (�1)

2�2
2

1

22
(2 + 2)!

�

2�2
2

�

!
�

2+2
2

�

! 2!
.

Note that we use the fact that the coe�cients are an,k = 0 for any k > n or k < 0, due

to the polynomial form in (5.13). Before we perform the inductive step, we deduce the

following helpful identity for any n, k 2 N,

1 =
n2 + nk + n + k

n2 + nk + n + k
=

(2n + 1) k + n (n � k + 1)

(n + 1)(n + k)

=
(4n + 2)

�

n+ k+1
2

�

k + 4n
�

n� k+1
2

� �

n+ k+1
2

�

(n + 1)(n + k)(n + k + 1)
.

(5.15)

The induction hypothesis (i.h.) is that the assertion (5.14) has been shown for any

n, k 2 N with 0  k  n.

We prove the inductive step n ! n+ 1 by,

an+1,k
(5.11)
= (�1)

n�k+1
2

1

2n+1

(n + k + 1)!
�

n� k+1
2

�

!
�

n+ k+1
2

�

! k!

(5.15)
=

 

(4n + 2)
�

n+ k+1
2

�

k

(n + 1)(n + k)(n + k + 1)
+

4n
�

n� k+1
2

� �

n+ k+1
2

�

(n + 1)(n + k)(n + k + 1)

!

· (�1)
n�k+1

2
1

2n+1

(n + k + 1)!
�

n� k+1
2

�

!
�

n+ k+1
2

�

! k!

=
2n + 1

n + 1
(�1)

n�k+1
2

1

2n
(n + k � 1)!

�

n� k+1
2

�

!
�

n+ k� 1
2

�

! (k � 1)!

� n

n + 1
(�1)

n�k�1
2

1

2n�1

(n + k � 1)!
�

n� k� 1
2

�

!
�

n+ k� 1
2

�

! k!

i.h.
=

2n + 1

n + 1
an,k�1 � n

n + 1
an�1,k .
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Using the representation (5.10) of Legendre moments, instead of (5.9), has several ad-

vantages. First, it is much more e�cient, since one does not have to solve a system of

coupled algebraic equations [193], but use a set of pre-computed Legendre polynomial

coe�cients using the results of Theorem 5.2.4. Second, taking advantage of the exact

computation of geometric moments from [100] discussed above, one can avoid numerical

errors due to discrete integration (cf. [102] for technical details). Finally, since one

is interested in invariant moments, it is straightforward to compute normalized central

Legendre moments from normalized central geometric moments as introduced above,

i.e.,

�p,q(�) = Cp,q

p
X

u=0

q
X

v=0

ap,uaq,v ⌘u,v(�) , (5.16)

for which the ⌘u,v are given in (5.5).

Using (5.16), one is able to encode a shape � into a scale- and translation-invariant

feature vector ~�N 2 Rd based on normalized central Legendre moments of order N 2 N0,

~�N(�) = {�p,q(�) 2 R | p + q  N } ,

with dimension d = (N + 1)(N + 2) / 2.

The reconstruction of a function fN from a finite vector of normalized central Legen-

dre moments ~�N can be expressed in a closed-form [73] by evaluating the Legendre

polynomials as,

fN(x, y) =
N
X

p=0

p
X

q=0

�p�q,qPp�q(x)Pq(y) . (5.17)

Note that with increasing order N the reconstruction error of fN compared to the exact

function f is reduced. However, one has to take special care of numerical approximation

errors for higher order moments, e.g., by using the exact computation in [102], since

these get relatively large compared to low order moments [73]. In order to guarantee

a binary reconstruction, one simply applies thresholding on the reconstructed function

fN .

Obtaining rotation invariance is more challenging compared to the problem of transla-

tion and scale invariance. Hu proposed in [104] a set of rotational invariant features based

on combinations of normalized central moments using the theory of algebraic invariants.

Foulonneau et al. give closed-form expressions for a�ne-invariant geometric moments

in [72] and due to the relationship (5.9) consequently also a�ne-invariant Legendre mo-

ments in [73]. A more straightforward way to obtain rotational invariant moments is to

use Zernike moments [193], which are based on an orthogonal set of functions that have

relatively simple rotation properties as discussed in the following.
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(a) Unit disc inside rectangular image domain. (b) Rectangular image domain inside unit disc.

Fig. 5.4. Illustration of two di↵erent sample techniques for rectangular images in

the context of Zernike moment computation on the unit disc inspired by [37].

Zernike moments

As indicated above, another possibility to obtain moments which are rotation invariant,

is to compute Zernike moments. These are based on an alternative set of orthogonal

polynomials, which were first introduced by Zernike in [208] in the context of beam

optics.

In order to discuss Zernike polynomials, it is prevalent to assume images with compact

support on the unit disc ⌦ = {~x 2 R2 | |~x|  1}. Di↵erent possibilities to transform and

sample a rectangular image on the unit disc are discussed in [37] and also illustrated in

Figure 5.4. For p 2 N0, q 2 Z with |q|  p, and any radius r � 0 the real-valued radial

polynomials are defined as,

Rp,q(r) =
p
X

k=q
p�k even

bp,q,k r
k , (5.18)

for which the coe�cients bp,q,k are similar to the Legendre coe�cients ai,j in (5.11) and

are given by [183],

bp,q,s = (�1)
p�s

2

�

p+ s
2

�

!
�

p� s
2

�

!
⇣

s+ |q|
2

⌘

!
⇣

s� |q|
2

⌘

!
.

Based on the definition of radial polynomials in (5.18), it is possible to introduce Zernike

polynomials as,

Vp,q(x, y) = Vp,q(r cos ✓, r sin ✓) = Rp,q(r) e
iq✓ . (5.19)
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Note that for a point (x, y) 2 ⌦ one obtains the radial coordinate r and angular coordi-

nate ✓ by,

r =
p

x2 + y2 , ✓ = tan�1
±
⇣y

x

⌘

,

where the inverse tangent tan�1
± (·) takes into consideration the quadrant of the respective

point.

The appealing feature of Zernike polynomials is the separable nature of their radial and

angular components, as gets clear from (5.19), i.e., Zernike polynomials can be written

as a product of two separate terms depending only on the radius r and the angle ✓,

respectively. Similar to the case of Legendre polynomials, the set of Zernike polynomials

is a complete orthogonal base of L2(⌦;C) [193], i.e.,
Z 2⇡

0

Z 1

0

!(r, ✓)Vn,p(r, ✓)V
⇤
m,q(r, ✓) drd✓ =

⇡

n + 1
�nm�pk ,

for all m,n 2 N0 and the constant weighting function ! ⌘ 1. Here, �ij denotes the

Kronecker delta for i and j, and V ⇤
m,q is a complex conjugated Zernike polynomial.

Based on Zernike polynomials, the advantages of the related moments were discussed

first in [193].

Definition 5.2.5 (Zernike moments). Let � : ⌦ ! {0, 1} be a given shape and p 2 N0,

q 2 Z with |q|  p. The Zernike moments Zp,q(�) of order p and repetition q are defined

as,

Zp,q(�) =
p + 1

⇡

Z 2⇡

0

Z 1

0

�(r, ✓)V ⇤
p,q(r, ✓) drd✓ . (5.20)

The desired property of rotation invariance is obtained by restriction to real-valued

Zernike moments [193]. This argument gets clear if one compares the Zernike moments

for a given shape � and its rotated version �↵ for any angle ↵ 2 R. Computing the

Zernike moments Zp,q for �↵ according to Definition 5.2.5, one simply gets,

Zp,q(�
↵) = e�iq↵ Zp,q(�) . (5.21)

This identity is due to the form of the Zernike polynomials in (5.19), as the polynomials

acquire a phase factor in case of a rotation. As gets clear in (5.21), the magnitude of

the Zernike moments is una↵ected by any rotation, i.e., |Zp,q(�↵)| = |Zp,q(�)|.

However, computing Zernike moments bears also problems, when not performed prop-

erly. According to Chong [37], there are two possible sources for approximation errors

when computing Zernike moments in discrete images. First, the geometrical error which

is induced by the transformation of a rectangular image to the unit disc domain.
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Figure 5.4 illustrates two possible sampling techniques. When naively mapping the rect-

angular image domain onto the unit disc, one faces the problem of pixels lying outside

the sampling region as illustrated in Figure 5.4a. Naturally, image information gets lost

in these border regions and this leads to erroneous Zernike moment-based representa-

tions. To overcome this problem the authors in [37] propose to map the rectangular

image domain inside the unit disc, as can be seen Figure 5.4b. By this approach, it is

guaranteed that all shape information are included in the Zernike moment-based repre-

sentation and hence no geometrical error is produced by encoding.

The second source for approximation errors is the numerical error induced by numeri-

cal integration schemes for (5.20). The often used zeroth order approximations lead to

severe limitations, especially for increasing order p of the computed Zernike moments,

since the Zernike polynomials get highly oscillatory for large p. To overcome this prob-

lem, the authors in [37] propose the exact computation of Zernike moments by making

use of the close relationship to geometric moments. Following the notation in [128], it

can be shown that geometric moments and Zernike moments are related by,

Zp,q =
p + 1

q

p
X

k=q
p�k even

k�q

2
X

m=0

q
X

n=0

(�i)n
✓k�q

2

m

◆✓

q

n

◆

bp,q,k mk�2m�n,2m+n

Using this relationship has two significant advantages in comparison to the straight-

forward formulation (5.9). First, scale and translation invariance can be achieved by

exchanging the geometrical moments mp,q by normalized central moments ⌘p,q in (5.5)

as discussed in [114]. Hence, one obtains normalized central Zernike moments µp,q by,

µp,q =
p + 1

q

p
X

k=q
p�k even

k�q

2
X

m=0

q
X

n=0

(�i)n
✓k�q

2

m

◆✓

q

n

◆

bp,q,k ⌘k�2m�n,2m+n (5.22)

Second, one is able to exactly compute the geometric moments using the formulation in

(5.6) and hence avoid any numerical errors induced by integration schemes. Note that if

one does not use the exact computation formula for geometric moments discussed above,

the relationship in (5.22) leads to higher numerical errors than the direct formulation in

(5.20) for Zernike moments of order N � 35 as discussed in [183].

Hosny proposed in [101] a fast algorithm that makes use of the above discussed e↵ects and

significantly increases the computational speed for Zernike moments by pre-computing

the needed coe�cients bp,q,p in (5.22). Another possible way to increase computational

e�ciency, is to exploit symmetry, e.g., by using Zp,�q = Z⇤
p,q and |Zp,q| = |Zp,�q|, one

only has to compute Zernike moments for repetition q � 0 [37]. Exploitation of even

more symmetry e↵ects is discussed in [183].
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Based on (5.22), one is able to encode a shape � into a scale-, translation-, and rotation-

invariant feature vector,

~µN(�) = {µp,q(�) 2 R | p  N } ,

consisting of Zernike moments of order N 2 N0 with dimension d = 2N2+1. This feature

vector is invariant under Euclidean transformations, which is especially interesting for

pattern recognition applications, e.g., [37, 104, 114, 193] and references therein.

The reconstruction of a function fN from a finite vector of normalized central Legendre

moments ~µN can be expressed as closed-form expression [37] by,

fN(x, y) =
N
X

p=0

X

|q|p
p�|q| even

µp,q Vp,q(x, y) .

Similar to the case of Legendre moments, the quality of the reconstruction directly de-

pends on the order of Zernike moments used for encoding (cf. Figure 5.3).

In summary, Zernike moments o↵er the most advantages for moment-based representa-

tions of shapes compared to geometric moments or Legendre moments, e.g., invariance

under Euclidean transformations and low information redundancy [194]. However, the

numerical realization of Zernike moments is significantly more challenging and various

possible error sources have to be considered during implementation as discussed above.

5.2.3 Shape priors for high-level segmentation

Shape information can be used to support high-level segmentation tasks in computer

vision and mathematical image processing. The incorporation of a-priori knowledge

about shapes into the process of segmentation is also known as shape prior segmentation.

Based on the chosen representation of the shapes, there are di↵erent concepts of shape

priors used in the literature (see the review article in [94]). The chosen representation

is a crucial component for designing shape priors, and one is interested in finding a

representation which compactly captures the variability of a class of shapes [165].

Following Definition 5.2.1, it is inevitable to align image objects to a set of training shapes

during the segmentation process . First, there exist methods which explicitly estimate

the transformation parameters needed to measure the correspondence of di↵erent shapes.

In contrast to that, there are also methods which directly measure correspondence of

shape representations by intrinsically aligning shapes and hence achieving registration

invariance. Hence, it is reasonable to categorize di↵erent shape priors with respect to

the underlying correspondence analysis approach.
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In the following we give an overview of recent approaches from the literature for the

incorporation of shape information and classify these according to the categorization

criterion discussed above. For description, we focus on the representation, comparison,

and alignment of shapes within these methods.

Explicit alignment shape priors

We start with methods which determine transformation parameters explicitly to fit a

shape model to an image object. Cootes et al. propose an approach known as ’active

shape models’ in [40] which is based on the idea of representing a shape by a set of

contour points and adjusting each point individually with respect to a set of training

shapes. The authors use principal component analysis to model the major variations

in direction of the k largest eigenvectors. Given an initial estimate of pose parameters

for an Euclidean transformation, a training shape is fitted to an image object. Every

contour point of the model shape is adjusted independently in normal direction to the

boundary. This information is used for updating the initial pose parameters of the

transformation and also to adjust the principal components of the model shape in order

to minimize the least squares distance to the image object. The active shape model

approach is extended by a supervised learning framework based on random forest clas-

sification by Ghose et al. in [79]. Fussenegger et al. propose in [75] a level set method

for segmentation and tracking tasks, which trains new aspects during online phase and

incrementally builds up an active shape model. In contrast to other approaches, where

the segmentation process and the learning of the shape model are totally detached, all

parts of the method are coupled.

A rather simple approach is presented by Houhou et al. in [103], which is based on the

idea of generating a statistical map as the mean intensity of a training set of aligned

binary shapes. Unlike other works, the authors align the images by manual inspection.

This segmentation is performed by iteratively updating the pose parameters of a Eu-

clidean transformation and subsequently align the statistical map model to the image

object.

In the work of Erdem et al. [65] the authors propose to represent shapes with edge

strength functions defined on binary silhouettes. Correspondence to a reference function

is measured by estimating a local deformation by means of registration. By employing

linear elasticity regularization the deformation is forced to be reasonable and smooth.

In [200] Tsai et al. represent shapes implicitly by a signed distance function as used for

level set methods (cf. Definition 4.4.6). Their approach is inspired by the first proposal

of this idea by Leventon et al. in [125]. To build up a set of training shapes, all given

shapes are aligned by minimizing an energy functional with respect to the unknown
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pose parameters of a Euclidean transformation. Subsequently, the authors employ a

singular eigenvalue decomposition to generate a set of k major eigenshapes encoding the

variations within the training data. The actual segmentation is performed using a level

set formulation which iteratively refines the principal components of the current shape

and the pose parameters according to a suitable data fidelity term in the segmentation

energy.

Similarly, Rousson and Cremers propose to align a set of reference shapes encoded as

signed distance functions in [166] and use a principal component analysis to span a

finite-dimensional shape subspace. This allows for an e�cient optimization during the

segmentation process based on the estimated shape distribution. However, in this work

the authors propose to model the shape distribution using a kernel density estimator,

which is able to approximate arbitrary shape distributions, in contrast to other works

explicitly assuming a Gaussian distribution.

Intrinsic alignment shape priors

In this part we summarize recent approaches which intrinsically implement the align-

ment of shapes without explicitly estimating transformation parameters. The basic idea

of [166] discussed above is rigorously generalized in the work of Cremers, Osher, and

Soatta in [43]. Here, the authors introduce two important concepts for the incorpora-

tion of shape priors into segmentation frameworks based on level set methods. First,

they propose shape dissimilarity measures for signed distance functions which are in-

variant under scale and translation transformations. Second, they propose to use a

Parzen-Rosenblatt kernel density estimator to generate a statistical shape dissimilarity

measure. This nonparametric density estimator is suitable to model arbitrary distri-

butions, in contrast to the commonly assumed single Gaussian distribution estimation

approaches. The idea of using a nonparametric shape prior by means of a kernel density

estimator has gained a lot of popularity in the computer vision community and thus has

been refined and extended in di↵erent works, e.g., [35, 73, 115, 226].

In [123] Lecellier et al. combine a shape prior defined for Legendre moment-based repre-

sentations of shapes with a data fidelity term designed for physical noise models of the

exponential family. The high-level segmentation step is performed by minimizing the

Euclidean distance between the normalized central Legendre moments of the current

segmentation and a single reference shape. An adaption of this approach for a�ne-

invariant Legendre moments is realized by Foulonneau et al. in [72], also with respect to

only a single reference shape. An extension of this model to a multi-reference shape prior

is introduced by the same authors in [73], using a Parzen-window kernel estimation as

proposed by [43]. We discuss this specific approach in more detail in Section 5.3.2.
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5.2.4 A-priori shape information in medical imaging

The idea of incorporating high-level information into the process of image segmentation

for medical imaging data has already been used successfully by various authors. This

section is meant to give a overview of recently developed methods in this field and in

particular in medical ultrasound imaging. Note that a subset of these approaches has

already been mentioned under another focus of discussion in Section 5.2.3. We refer to

the work of Heimann and Meinzer in [94] for an expansive review of statistical shape

models for three-dimensional medical image segmentation .

Computed tomography

Houhou et al. propose in [103] to use binary images from manual segmentations as train-

ing set and compute a statistical map based on these binary images to build up a shape

prior model. The segmentation is performed by minimizing a variational formulation

with the help of maximum a-posteriori estimation. They determine the objects’ pose

by computing a rigid transformation which is optimal by means of the least squares

distance. The authors give a few experimental results on synthetic images perturbed by

additive Gaussian noise and real medical CT images of the human neck.

Chen and Radke propose a variational segmentation formulation in [35] based on region-

based shape and intensity information. Both features are learned from a given set of

training shapes. The authors use level set methods and a shape prior designed for non-

parametric shape distributions. They apply their approach on pelvic CT scans of human

patients, which proves to be challenging due to highly inhomogeneous background and

target regions. The authors state that the main advantage of their method is the fact

that no regularization parameter has to be determined for image segmentation, since

data fidelity term as well as regularization term were observed to have approximately

the same magnitude for their specific application.

Magnetic resonance imaging

In [200] Tsai et al. incorporate high-level information from a set of training shapes

into a level set formulation representing shapes as signed distance functions. This ap-

proach is tested on synthetic data containing hand-written digits and jet fighters. Fur-

thermore, the authors test their method for segmentation of the left ventricle in real

two-dimensional MRI images and on three-dimensional MRI data of a human prostate.



5.2 Concept of shapes 165

Positron emission tomography

The use of shape priors in positron emission tomography is rather uncommon and to the

best of our knowledge not many publications come this field of research. Liao and Qi

propose in [127] to incorporate shape information in the process of image reconstruction

by utilizing segmented images from registered CT data. Using level set methods, they

align the clear edges from CT to support reconstruction of the corresponding PET image

and hence obtain smooth regions-of-interest with sharp boundaries. The authors show

results for a single simulated PET image corresponding to real murine PET/CT data.

In [82] Gigengack et al. propose a so-called passive contour distance for the use in atlas-

based PET/CT segmentation of murine data. Here, shape information are extracted

from the Digimouse software atlas.

We tested the potential of shape priors for segmentation of three-dimensional PET data

with the help of Legendre moments in [219]. As could be shown for synthetic as well

as real patient data, the robustness of the segmentation is significantly increased when

high-level information are used, especially on data sets with structural artifacts, e.g., on

data sets of human patients after myocardial infarction.

Medical ultrasound imaging

The use of shape priors for segmentation of echocardiographic data yields great po-

tential. Rousson and Cremers propose in [166] to perform a kernel density estimation

in a low-dimensional subspace spanned by the given training shapes combined with a

nonparametric intensity model and a data-driven estimation of the objects’ pose. The

authors qualitatively compare the proposed approach to an existing method on real

echocardiographic data and three-dimensional prostate data from CT.

The latter approach is generalized by Cremers, Osher, and Soatto in [42] and embedded

into the context of level set methods. The authors propose a variational model for in-

trinsic registration of the evolving level set contour to a space of scale and translation

invariant level set functions. They test their method on natural images of a walking

person and additionally evaluate the proposed approch for the segmentation of the left

ventricle in real echocardiographic data.

In [123] Lecellier et al. combine a-priori knowledge about physical noise present in med-

ical US imaging with a shape prior based on Legendre moments. They give a general

formulation for the derivation of appropriate data fidelity terms and refer to [122] for

appropriate physical noise modeling, e.g., additive Gaussian noise and Rayleigh noise.

Although the numerical realization for the minimization of the variational formulation

is omitted, the authors show experimental results on real echocardiographic data.
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Using multiple mean parametric models derived from principal component analysis on

trained shape and intensity information, Ghose et al. propose in [79] a segmentation

framework for the human prostate in real medical US B-mode images. They group

these mean models by spectral clustering and use probabilistic classification using ran-

dom forests to build and propagate the shape model during the segmentation process.

Ma et al. construct three-dimensional training shapes of the left ventricle in [135] based

on two-dimensional manual delineations from echocardiographic experts and perform

principal component analysis on the set of training shapes. This reference set is split up

into end-diastolic and end-systolic states of the left ventricle to enable segmentation of

di↵erent phases during myocardial cycle. The authors use active shape models to align

the shape model to acquired data from single-beat 3D echocardiography.

Dydenko et al. propose a level set framework in [63] incorporating both a motion and a

shape prior for tracking of the septal wall in the human myocardium. They assume a

Rayleigh distribution to use an appropriate data fidelity term in their framework.

In [228] Zhou et al. combine a local region-based segmentation formulation with the

advantages of additional features such as motion and high-level information to tackle

the challenging problem of tracking a beating heart of a zebrafish in ultrasound bio-

microscopic images. The authors validate their method on images from a hardware

phantom and show excellent results on real data of living zebrafishes.

5.3 High-level segmentation for medical ultrasound

imaging

Medical ultrasound images are a↵ected by a variety of physical perturbations as de-

scribed in Section 3.3. To increase the robustness of segmentation algorithms in presence

of these e↵ects, a variety of high-level segmentation approaches have been proposed in

the literature (cf. Section 5.2.4). In the following we incorporate a-priori knowledge

about the shape of the left ventricle into the low-level segmentation methods proposed

in Section 4.5 and Section 4.3 and investigate the impact of di↵erent data fidelity terms

on the robustness and segmentation accuracy of high-level segmentation.

In Section 5.3.1 we motivate the application of high-level segmentation techniques by the

observation of problems occurring, when low-level segmentation algorithms are used on

di�cult ultrasound data. We introduce a multi-reference shape prior based on Legendre

moments from the literature in Section 5.3.2. Subsequently, we discuss its numerical

implementation and in particular the realization of a shape update in Section 5.3.3.
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(a) Manual segmentation by an expert (b) Erroneous low-level segmentation

Fig. 5.5. Comparison of (a) a manual segmentation of the human left ventricle

by an expert to (b) an unsatisfying automatic low-level segmentation result due to

missing anatomical structures.

5.3.1 Motivation

The main intention of using high-level information during the process of segmentation

is to stabilize a method in presence of image noise and structural artifacts, e.g., occlu-

sion. Low-level segmentation algorithms are notably prone to the latter e↵ects, as they

are based on intrinsic image features only. These image features can be severely cor-

rupted by perturbations. In the context of medical ultrasound imaging there are several

physical phenomena that cause problems to low-level segmentation methods. The most

important e↵ects have already been discussed in Section 3.3, i.e., multiplicative speckle

noise and shadowing e↵ects. However, even in the absence of these e↵ects, situations

may occur, in which the imaged structures lead to erroneous segmentation results.

Figure 5.5 illustrates the problem of low-level segmentation methods when used for ob-

jects in a complex background, i.e., the human heart in an apical four-chamber view.

The task for the given image is to delineate the endocardial border of the left ventricle

(upper cavity). The challenge in this situation is the fact that the lumen of the left

ventricle is not closed the mitral valves in the lower part of Figure 5.5. An echocardio-

graphic expert uses his knowledge about the shape of the left ventricle to delineate the

anatomical structure as can be seen in Figure 5.5a, regardless of physical e↵ects and

missing structures. Low-level segmentation methods though, can lead to unsatisfying

segmentation results as illustrated in Figure 5.5b. Here, the left ventricle is connected

to the lower cavity of the left atrium, since there is no visible separation.

Based on these observations, it is desirable to enhance the low-level segmentation models

introduced in Section 4 by additional information about the shape of the left ventricle

and thus increase the robustness and segmentation accuracy.
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An overview of methods proposed for high-level segmentation of medical ultrasound data

has already been given in Section 5.2.4. All these methods have in common that they

implement shape priors for US image segmentation and report increased robustness in

the presence of perturbations. However, the impact of physical noise modeling on the

results of high-level segmentation processes has not been investigated so far.

Hence, the contribution of this work is to investigate the impact of the noise models

introduced in Section 3.3.1 on the process of high-level US image segmentation. In

contrast to related works, we quantify the influence of appropriate noise modeling for

high-level segmentation of ultrasound images and determine the best candidate for the

combination with shape priors.

5.3.2 High-level information based on Legendre moments

In Section 5.2.1 di↵erent concepts of shape representation have been introduced and

discussed. For our purpose of investigating the impact of physical noise modeling on

high-level segmentation it is reasonable to use moment-based shape descriptors as dis-

cussed in detail in Section 5.2.2. There are several advantages of representing the shape

of the left ventricle by moments.

First, as a special case of global region-based shape descriptors, moments are most ro-

bust in the presence of noise [225]. Furthermore, since we use orthogonal polynomials to

encode the shapes, we can expect relatively small feature vectors with only little redun-

dancy, which leads to relatively low computational complexity during the segmentation

process. Additionally, optimization can be performed in finite-dimensional spaces due

to the fixed order N of the moments, in contrast to finding optimal solutions in infinite-

dimensional spaces, e.g., computation of an optimal signed distance function.

Second, since the shape of the left ventricle can vary significantly for di↵erent patient

data sets and imaging protocols, we are interested in a multi-reference shape prior, which

can capture these variations without any additional assumptions on the shape distribu-

tion. We already discussed such a shape prior based on a kernel density estimation in

Section 5.2.3, both in the context of using signed distance functions and moment-based

representations. Representation of shapes by signed distance functions as described in

[43] would be straightforward in the case of the level set segmentation method proposed

in Section 4.5. However, in the context of the region-based variational segmentation

framework introduced in Section 4.3, it is less meaningful to encode segmented regions

as signed distance functions. To investigate the influence of data modeling on both

low-level segmentation frameworks flexibly, we use a multi-reference shape prior using

Legendre moment-based representations of shapes as proposed in [73].
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For the description of the shape prior we recall that we are interested in segmenting

images f : ⌦ ! R defined on an open and bounded image domain ⌦ ⇢ R2. As we

are interested in a partitioning of ⌦ into the left ventricle and other structures (which

we denote as background region), we discuss our method in the context of a two-phase

segmentation problem, i.e., m = 2 in (4.1). Hence, we identify the left ventricle region

by binary functions, i.e., we encode a given shape � : ⌦! {0, 1} by an indicator function

as formulated in (5.1).

Given a set of reference shapes �ref
k , k = 1, . . . , n, e.g., from manual delineations by

echocardiographic experts, we transform each shape �ref
k into its respective normalized

central Legendre moment-representation of order N 2 N according to (5.16),

~�N
k = ~�(�ref

k ) = {�p,q(�
ref
k ) 2 R | p + q  N } .

Some works in the literature, e.g., Zhang et al. in [226], subsequently perform principal

component analysis on the set of feature vectors ~�N
k , k = 1, . . . , n, and keep the first

0 < t  d principal components to use only the most discriminative shape features

within the shape subspace spanned by the reference shapes. However, we refrain from

using principal component analysis for the proposed high-level segmentation methods,

as this requires knowledge about the shape distribution to choose an optimal value t.

Given a set of Legendre moment feature vectors ~�N
k , k = 1, . . . , n, one has to make

assumptions on the statistical shape distribution that is most appropriate for these refer-

ence vectors. Typical parametric distribution models assumed in the literature are, e.g.,

uniform distributions and normal distributions. For details on statistical shape analysis

we refer to [58, 59, 68]. Recently, di↵erent authors in the literature stated that using

parametric distribution models for shape modeling is inappropriate in many applications

(cf. [42, 166] and references therein). This is due to the fact that for many high-level

segmentation tasks, e.g., in medical image analysis, the shape representations form clus-

ters which cannot be described su�ciently by a parametric global distribution model.

In order to overcome the limitations of assuming a parametric shape distribution, Rous-

son and Cremers [166] proposed to use a Parzen-Rosenblatt kernel density estimator

known from statistics. One can define the kernel density estimator for a given vector
~�N as [166],

P(~�N) =
1

n�

n
X

k=1

K

 

~�N � ~�N
k

�

!

, (5.23)

for which K : Rd⇥Rd ! R is a symmetric kernel function which integrates to one, and �

is the bandwidth of the kernel function. This estimator is able to approximate arbitrary

distributions and it can be shown that the kernel density estimation converges to the

true distribution for n ! 1 and � ! 0, e.g., see [182].
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(a) Global parametric model (b) Gaussian mixture model

Fig. 5.6. Illustration of two di↵erent approximations of the distribution of a set of

two-dimensional points inspired by [166]. The dashed line indicates the domain of

high probability for the estimated density.

Typically, one assumes that the probability for each shape is equal and the kernel func-

tion K is chosen as a standard normal distribution, i.e.,

K(~x) =
1p
2⇡

exp

✓

� h~x, ~xi
2

◆

.

For this special case, (5.23) realizes a Gaussian mixture model (GMM) [73] with Gaussian

distributions of fixed variance �2 2 R>0. To measure the probability of the Legendre-

moment based representation of a shape ~�N with respect to a given set of reference shape

representations ~�N
k , we model the shape distribution by a GMM as,

P(~�N) =
1p

2⇡ �n

n
X

k=1

e�
|~�N �~

�

N

k

|2

2�2 (5.24)

This assumption is used in several related works, e.g., [166, 226], and can be interpreted

as describing clusters of shapes by the sum of local Gaussian distributions, in contrast

to assuming one global distribution model.

Figure 5.6 illustrates the advantage of this model for a set of two-dimensional points.

Since the points in this example are arranged in clusters, the approximation by a global

parametric Gaussian distribution in Figure 5.6a is rather inappropriate. Although no

points are in the center-of-mass of these clusters, the estimated density would have the

highest probability there. In contrast to that, the GMM realized by the Rosenblatt-

Parzen kernel density estimator adequately approximates the distribution of the points

as can be seen in Figure 5.6b. For this reason, the Rosenblatt-Parzen kernel density

estimator is a good choice for unknown and arbitrarily complex distributions. For further

details on GMMs we refer to [184, §10.10].
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Typically, the unknown parameter �2 is estimated from the given set of feature vectors

[42, 166] by an average nearest-neighbor estimation, i.e.,

�2 =
1

n

n
X

i=1

min
i 6=j

|~�N
i � ~�N

j |2 .

This can be interpreted as GMM model for which two feature vectors are situated within

a range of standard deviation one of the corresponding Gaussian functions [42].

Due to the statistical modeling of the segmentation process in Section 4.3.2, it is rea-

sonable to introduce the multi-reference shape prior for a shape � based on the GMM

in (5.24) as,

Rsh(�) = � log p(~�N(�)) = � log

 

n
X

k=1

e�
|~�N (�)�~

�

N

k

|2

2�2

!

. (5.25)

The negative logarithm is due to the maximization of the a-posteriori probability density

in (4.11) and is discussed in Section 5.4.1 below. Note that we identify a shape � with

its Legendre-moment based representation ~�N(�) in (5.25), which is only valid if the

order N of the Legendre-moments is chosen high enough (cf. Section 5.2.2).

Finally, note that Zernike moments are superior to Legendre moments in many applica-

tions as indicated in Section 5.2.2. Although it would be possible to incorporate these

into the suggested shape prior in (5.25), we abdicate the advantage of intrinsic rotational

invariance induced by Zernike moments, due to the significantly higher numerical e↵ort

during implementation.Thus, we have to perform an additional step to achieve rotational

invariance and align all shapes according to angles obtained by a principal component

analysis. This approach is feasible, since the shape of the left ventricle is elongated and

thus the two major axis are clearly distinguishable by the respective eigenvalues of the

covariance matrix. The implementation of rotational invariance enhances the robust-

ness of the segmentation algorithms proposed in the following sections and enables to

segment ultrasound images obtained from di↵erent examination protocols for which the

orientation of the left ventricle varies.

5.3.3 Numerical realization of shape update

To perform high-level segmentation based on the shape prior in (5.25) one has to compute

a shape � which minimizes Rsh(�). Due to the form of the shape prior, it is reasonable to

identify a shape � with its Legendre-moment based representation ~�N(�). This enables

to perform the minimization inn the finite-dimensional shape space Rd. Note that this
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identification always leads to approximation errors depending on the chosen orderN 2 N,
due to the loss of information during encoding and reconstruction discussed in Section

5.2.2. Hence, the order N has to be chosen high enough to allow for this approach. In

the following we keep N 2 N fixed and high enough, such that approximation errors are

negligible. Furthermore, we write ~�(�) = ~�N(�) in the following for the sake of clarity.

According to [73, 226] the shape prior energy Rsh(�) can be minimized iteratively by a

successive shape update using a gradient descent approach,

~�j+1(�) = ~�j(�) � ⌧
@Rsh

@�

⇣

~�j(�)
⌘

, (5.26)

where ⌧ 2 R�0 is the step width in direction of the steepest gradient and ~�0(�) = ~�(�).

Denoting with ~�j = ~�j(�), the direction of the gradient descent can be computed by

simple derivation of (5.25) as,

@Rsh

@�

⇣

~�j(�)
⌘

=
1

C(~�j)

n
X

k=1

( ~�j � ~�k) e
� | ~�j �~

�

k

|2

2�2 with C(~�j) = 2�2
n
X

i=1

e�
| ~�j �~

�

i

|2

2�2 .

After convergence of the gradient descent approach in (5.26), one can obtain the updated

shape that minimized Rsh by using the reconstruction formula for Legende moments in

(5.17). In summary, the shape update for a given shape �j ! �j+1 in the shape space

can be visualized as,

�j (5.16)�! ~�(�j)
(5.26)�! ~�(�j+1)

(5.17)�! �j+1 .

5.4 Incorporation of shape prior into variational

segmentation framework

In the following we shortly describe how to incorporate the shape prior introduced in

Section 5.3.2 into the region-based variational segmentation framework from Section 4.3.

In particular, we present a possibility to use the shape prior as regularization term in Sec-

tion 5.4.1. We highlight modifications in the numerical realization during minimization

of the corresponding energy functional in Section 5.4.2. Implementation details, such as

computational complexity and parameter choice, are given in Section 5.4.3, where as ex-

perimental results on real patient data are presented in Section 5.4.4. Note that a major

part of the proposed high-level segmentation framework is based on our work in [197].

We restrict our discussion to the two-phase segmentation formulation, i.e., partitioning

in region-of-interest and background region for m = 2 in (4.1).
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Since we want to investigate the impact of di↵erent noise models on high-level segmen-

tation results for medical ultrasound data, we restrict the proposed framework to a

generalized Chan-Vese formulation (cf. Section 4.3.4) with constant approximations c1

and c2 for subregions ⌦1 and ⌦2, respectively,

E(c1, c2,�) =

Z

⌦

�(~x)D1(f, c1) + (1 � �(~x))D2(f, c2) d~x + �|�|BV (⌦) . (5.27)

In this context, � denotes the indicator function in (5.1) for the region-of-interest ⌦1,

which we also use to represent the shape of the segmented object.

Although the assumption of a constant approximation for the image intensities in the

background region ⌦2 is rather inappropriate for echocardiographic images, e.g., due to

the inhomogeneity image regions surrounding the lumen of the left ventricle, we restrict

ourselves to this case for the sake of simplicity. Discarding the regularization terms

R1 and R2 in (4.21), we are able to focus on the evaluation of di↵erent data fidelity

terms D1 and D2 during shape prior segmentation. Computation of more realistic ap-

proximations would increase the computational e↵ort drastically and thus complicate

our investigations. In particular, this restriction alleviates the search for optimal reg-

ularization parameters of (4.21) when applying the proposed high-level segmentation

framework on real patient data in Section 5.4.4. Note that the assumption of piecewise

constant images has also been used successfully by other authors, e.g., in [42, 73, 226].

5.4.1 Bayesian modeling

As discussed in Section 4.3.2, the proposed region-based variational segmentation frame-

work is statistically motivated, and the partitioning P2(⌦) of the image domain ⌦ is

computed via a maximum a-posteriori probability estimation for p(u,P2(⌦) | f). Uti-

lizing the idea of Bayesian modeling, we are able to decouple geometric properties from

image based terms in (4.11).

To incorporate high-level information about shapes into the segmentation process, we

modify the a-priori probability density for the partition P2(⌦) as,

p(P2(⌦)) / p
⇣

~�N(�)
⌘

e��Hn�1(�) , � > 0 . (5.28)

Here, p(~�N(�)) is the Rosenblatt-Parzen kernel density estimator (for the special case of

a GMM) in (5.24), which is evaluated for the shape � induced by the partition P2(⌦).

The second term provides a regularization constraint that favors a small size of the edge

set � of ⌦1 in the (n� 1)-dimensional Hausdor↵ measure Hn�1 as given in (4.12).
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Embedding the modified a-priori probability density (5.28) into the the a-posteriori

probability (4.11), we obtain a maximum a-posteriori estimation by minimizing the

negative logarithm. Thus, our proposed variational segmentation framework combining

both low-level and high-level information reads as,

E(c1, c2,�) =

Z

⌦

�(~x)D1(f, c1)+ (1��(~x))D2(f, c2)d~x+ �|�|BV (⌦) + �Rsh(�) . (5.29)

The total variation |�|BV (⌦) of � (i.e., the perimeter of ⌦1 in ⌦) allows to regulate the

level of details in the segmentation results by the regularization parameter � 2 R>0 and

hence the smoothness of the segmentation contour. The shape prior Rsh from (5.25)

controls the influence of the high-level information by an additional regularization pa-

rameter � 2 R>0, based on the set of reference shapes. Consequently, we obtain a

unified variational segmentation framework incorporating low-level (noise models) and

high-level (shape priors) information.

Note that the segmentation model (5.29) slightly varies from the model originally pro-

posed in [197], where an additional auxiliary variable �sh has been introduced together

with a penalty term to ensure the constraint � = �sh. However, as we show in the

following, this penalty term appears naturally during the numerical realization of the

segmentation method. Thus, we discuss a more elegant variational model in this work

compared to the proximal formulation in [197]. Segmentation is performed by solving

the following minimization problem,

inf {E(c1, c2,�) | ci constant, � 2 BV (⌦; {0, 1}) } . (5.30)

5.4.2 Numerical realization

For the numerical realization of the proposed high-level segmentation model discussed

above, one has to compute a solution to the minimization problem (5.30). This can be

performed by solving the equivalent constrained minimization problem,

inf
�,�

sh

2BV (⌦;{0,1})
c
i

constant

(

Z

⌦

�(~x)D1(f, c1) + (1� �(~x))D2(f, c2) d~x

+ �|�|BV (⌦) + �Rsh(�sh) s.t. � = �sh

)

.
(5.31)

It is reasonable to decouple the minimization of the shape prior Rsh, since this can be

performed e�ciently in the shape space by means of Legendre moments (cf. Section

5.3.2). The problem (5.31) can be solved using methods for constrained optimization,

e.g., the alternating direction method of multipliers (ADMM) discussed in Section 4.3.5.
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The augmented Lagrangian function of the constrained problem (5.31) reads as,

L�(c1, c2,�,�sh,�) =

Z

⌦

�(~x)D1(f, c1) + (1� �(~x))D2(f, c2) d~x + �|�|BV (⌦)

+ �Rsh(�sh) + h�,� � �shi +
�

2
||� � �sh||2L2(⌦)

(5.32)

Here, � is a Lagrangian multiplier (not to be confused with the Legendre moment feature

vector ~�N from Section 5.2.2), � 2 R>0 is a relaxation parameter, and the additional

inner product term, also known as augmentation, ensures the constraint � = �sh. Using

Uzawa’s algorithm (see e.g., [64]) without preconditioning, one can solve for c1, c2,�,

and �sh iteratively using an alternating minimization scheme given by,

ck+1
i 2 argmin

c
i

constant

⇢

Z

⌦

�̃k
i (~x)Di(f, ci) d~x

�

, i = 1, 2 , (5.33a)

where �̃k
1 = �k and �̃k

2 = (1� �k). Furthermore, we have,

�k+12 argmin
�2BV (⌦;{0,1})

⇢

Z

⌦

�(~x)D1(f, c
k+1
1 ) + (1 � �(~x))D2(f, c

k+1
2 ) d~x

+ �|�|BV (⌦) + h�k,� � �k
shi +

�

2
||� � �k

sh||2L2(⌦)

�

,

(5.33b)

�k+1
sh 2 argmin

�
sh

2BV (⌦;{0,1})

⇢

�Rsh(�sh) + h�k,�k+1 � �shi +
�

2
||�k+1 � �sh||2L2(⌦)

�

. (5.33c)

Finally, one obtains an update for the estimation of the Lagrangian multiplier �k+1 by

a gradient ascent step,

�k+1 = �k + �
�

�k+1
sh � �k+1

�

. (5.33d)

The optimal constants ck+1
1 and ck+1

2 of the denoising problem (5.33a) are computed for

each assumed noise model depending on the current segmentation �k as described in

Section 4.3.3 and thus there is no adaption needed for high-level segmentation.

Consequently, we can focus on the numerical realization of the segmentation problems

(5.33b) and (5.33c) in the following. First, we discuss the solution of the subproblem

(5.33b), which can be rewritten to,

�k+1 2 argmin
� 2BV (⌦;{0,1})

⇢

h�, gi + � |�|BV (⌦)

�

. (5.34)

Here, h·, ·i denotes the standard dot product of two functions in the Hilbert space L2(⌦).
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Using the identity �2 ⌘ � for characteristic functions, g is given by,

g = D1(f, c
k+1
1 ) � D2(f, c

k+1
2 ) + �k � �

✓

�k
sh � 1

2

◆

.

Note that the last term decreases the values of g in the region of the shape �k
sh and

increases its values outside of �k
sh by the magnitude of the regularization parameter

�. Due to the convex relaxation results of Theorem 4.3.3, we can e�ciently compute

a solution for (5.34) by solving an associated Rudin-Osher-Fatemi (ROF) denoising

problem,

min
u 2BV (⌦)

1

2

Z

⌦

(u(~x) � g(~x))2 d~x + � |u|BV (⌦) . (5.35)

An optimal solution û 2 BV (⌦) to (5.35) can be computed using Algorithm 2 for the

constant weighting function h ⌘ 1. The updated segmentation �k+1 can finally be

obtained by thresholding û pointwise on ⌦, such that,

�k+1(~x) =

8

<

:

1 , if û(~x) < 0 ,

0 , else .
(5.36)

The advantage of this approach is the strict convexity of the ROF model, which guaran-

tees the existence of unique minimizer and consequently the avoidance of local minima,

in contrast to, e.g., level set methods in Section 5.5.

To obtain an update of the auxiliary variable �k+1
sh as solution to the subproblem (5.33c),

one computes the necessary conditions for a local minimum (pointwise on ⌦) as,

0 = ��k(~x) � �
�

�k+1(~x) � �k+1
sh (~x)

�

+ �
@Rsh

@�sh

�

�k+1
sh (~x)

�

.

Using a semi-implicit approach, we compute an update of �sh as,

�

�k+1
sh

�j+1
(~x) = �k+1(~x) � 1

�

✓

�
@Rsh

@�sh

⇣

�

�k+1
sh

�j
(~x)

⌘

� �k(~x)

◆

.

Following the idea in [226], we perform only a single iteration step, initialize
�

�k
sh

�0
= �k

sh

and thus get �k+1
sh =

�

�k
sh

�1
. With the help of the updated segmentation �k+1, we are

able to approximate �k
sh ⇡ �k+1. This is feasible, since the constraint in (5.31) is enforced

by the augmentation during the minimization process.

Finally, we are able to e�ciently realize the shape update by performing a gradient

descent step in the finite dimensional shape space as indicated in (5.26) by,

�k+1
sh (~x) = �k

sh(~x) � 1

�

✓

�
@Rsh

@�sh

�

�k
sh(~x)

�

� �k(~x)

◆

. (5.37)
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Algorithm 6 Proposed variational high-level segmentation framework (ADMM)

�0 = initializeSegmentation()
�0
sh = �0

�0 = 0
repeat

(ck+1
1 , ck+1

2 ) = computeOptimalConstants(�k) Section 4.3.4
û = solveROF(ck+1

1 , ck+1
2 ,�k,�k

sh,�
k, �, �) Algorithm 2

�k+1 = thresholdU(û) (5.36)
�k+1
sh = updateShape(�k+1,�k, �, �) (5.37)

�k+1 = updateMultiplier(�k+1,�k+1
sh , �) (5.33d)

until Convergence

The numerical realization of the proposed variational high-level segmentation framework

is summarized in Algorithm 6. In each iteration step of the alternating minimization

scheme one has to solve an ROF problem using Algorithm 2 and consequently one has to

realize two nested iteration schemes. We refrain to explicitly indicate this in Algorithm

6 for the sake of clarity.

We propose to initialize the segmentation �0 either as a set of equidistant circles covering

⌦ or as manual initialization by the user. Naturally, one chooses �0
sh = �0 as initial-

ization for the auxiliary variable and �0 ⌘ 0 during the first iteration. The alternating

minimization scheme iteratively updates the di↵erent variables until the relative change

of the primal variable �k falls below a specified threshold, i.e.,

||�k+1 � �k||L2(⌦)

||�k+1||L2(⌦)
< ✏ .

5.4.3 Implementation details

In the following we describe relevant implementation details of the proposed variational

high-level segmentation framework and, in particular, give typical parameter settings

and the computational e↵ort. We implemented Algorithm 6 in the numerical computing

environment MathWorks MATLAB (R2010a) on a 2⇥2.2GHz Intel Core Duo processor

with 2GB memory and a Microsoft Windows 7 (64bit) operating system.

Parameter choice

We choose the order of Legendre moment-based representations of shapes as N = 40

for the following reasons. First, for lower order of moments N < 40 the reconstruction

error led to significant distortions of the shapes. This is illustrated in Figure 5.3, where
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important image features of the star-shaped object are lost after reconstruction and

hence lead to undiscriminable shape representations. We made similar observations

during the reconstruction of the left ventricle. Although in this case the shape of the

left ventricle is almost elliptical, the concave indention representing the delineation by

the mitral valves gets lost for low moment orders.

To avoid this problem we performed experiments with high moment orders, i.e., N > 40.

However, as discussed in Section 5.2.2 for high order of moments, the problem of potential

numerical errors arises. Additionally, we observed that the increase in reconstruction

accuracy is rather marginal for moments of order N > 40. For this reason, we fixed

the order of the Legendre moments used for encoding the shape of the left ventricle to

N = 40. This leads for a given shape � to a feature vector ~� 2 Rd of size d = 861.

During our numerical experiments for the proposed variational high-level segmentation

framework, we optimized the selection of regularization parameters �, �, and � in (5.29)

with respect to the segmentation performance as described in Section 5.4.4 below. Note

that the used datasets were normalized to f : ⌦ ! [0, 1] during these experiments. In

the following, we give the typical parameter settings for the three di↵erent noise models

(cf. Section 4.3.3).

For additive Gaussian noise we used � 2 [0.02, 1.5], � 2 [0.01, 0.05], and � 2 [10�4, 0.9].

In the case of Loupas noise we chose � 2 [0.015, 0.02], � 2 [0.01, 0.05], and � 2 [0.8, 0.9].

Assuming Rayleigh noise, we could observe the best segmentation results for the param-

eters � 2 [0.1, 0.5], � 2 [10�4, 10�3], and � 2 [0.1, 0.2].

Based on the parameter setting discussed above, we observed that a noise variance pa-

rameter of � = 0.19 in (4.32) is the best choice in the case of multiplicative speckle

noise, while � = 0.27 in (4.33) led to the best results for Rayleigh noise.

Computational complexity

In order to understand the computational complexity of to proposed variational high-

level segmentation framework and the overall time needed to compute segmentation

results, we give a detailed discussion of the substeps of Algorithm 6 with respect to their

computational e↵ort.

Let us assume we have k outer iterations of our segmentation process. In each of these

iterations we have to compute the optimal constants for ⌦1 and ⌦2 and perform the

image-based segmentation by solving an associated ROF denoising problem based on

the updated optimal constants c1 and c2. The last step is the update of the shape �sh

according to its similarity to the training set of shapes by an shape update in the vector

space of moment-based representations.
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The computation of the optimal constants can be performed in O(|⌦|), since the in-

tensity values of all pixels are used only once to perform these calculations.

The image-based segmentation step is rather complex, as e�cient solver schemes

from numerical mathematics are used (cf. Algorithm 2). Let us assume we need p in-

ner iteration steps. Then the computational complexity of the segmentation step is in

O(p · |⌦| log(|⌦|)), since we have to perform a discrete cosine transformation in every

inner iteration step.

Finally, we discuss the shape update using a single steepest gradient step. Let N be

the degree of the used Legendre polynomials and let us assume we use all principal com-

ponents of the feature vectors. Furthermore, let d = (N+1)(N+2) / 2 be the dimension

of the vector of central normalized Legendre moments ~�. To encode the current shape

� by Legendre-moments (cf. Section 5.2.2) we have a complexity of O(d · |⌦|). The

gradient descent step for the optimization of the shape prior is performed in O(d). To

reconstruct the updated shape from Legendre moments we need O(d · |⌦|) operations.
Hence, the total computational complexity of the proposed variational high-level seg-

mentation framework is in O(pk · |⌦| log |⌦|).

Runtime

We give details about the expected runtime for Algorithm 6 in the following. For a 108⇥
144 pixel image we measured the number of iterations needed to perform segmentation

and the corresponding runtime.

For the image-based segmentation step of Algorithm 6 we observed that 850 � 1400

inner iterations are enough to reach a stationary state for Rayleigh and multiplicative

speckle noise, i.e., no more changes between two consecutive inner iteration steps in

the associated ROF solver. For additive Gaussian noise 1200 � 2400 inner iterations

were needed. For the outer iterations we observed between 25� 35 iteration steps until

convergence of the alternating minimization scheme.

The computation of the optimal constant approximations for fore- and background takes

approximately 1ms and the shape update 60ms. Compared to the segmentation step,

these two substeps can be neglected for the overall runtime of the proposed method. As

described above the image-based segmentation has the highest computational complexity

and needs 5.1s per step. The overall time for the segmentation process with 35 outer

iterations takes approximately 150s.
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Fig. 5.7. Part of the training data set used to build the shape prior energy (5.25).

The masks show manually segmented shapes of LV of the human heart.

5.4.4 Results

In this section we investigate the influence of the di↵erent noise models introduced in Sec-

tion 3.3.1 on high-level segmentation of ultrasound data using the proposed variational

high-level segmentation formulation in (5.29). Clearly, the advantage of the low-level

variational segmentation framework from Section 4.3 is its flexibility and modular for-

mulation. This helps us to evaluate the impact of physical noise modeling on high-level

segmentation by testing di↵erent data fidelity terms D1 and D2 for the fore- and back-

ground region, respectively. In particular, we evaluate the performance of the noise

models for additive Gaussian, Loupas, and Rayleigh noise, which have been deduced in

Section 4.3.3.

Training data for shape prior

In order to evaluate the segmentation results we asked two clinical experts to perform

manual delineations of the endocardial contour for 30 di↵erent datasets from echocardio-

graphic examinations of real patients imaged by an Philips iE33 US imaging system with

di↵erent transducers. These datasets contain ultrasound B-mode images from di↵erent

acquisition angles, i.e., apical two-, three-, and four-chamber views. Both experts have

been familiar with this task due to daily clinical routine.
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(a) � = 0.05 (b) � = 0.9 (c) � = 1.5

Fig. 5.8. Visualization of three di↵erent high-level segmentation results of the

variational framework using the additive Gaussian noise model. The di↵erent �

values control the influence of the shape prior.

We obtained 60 binary masks in total, which could be used as reference shapes for

building the shape prior in Section 5.3.2. Figure 5.7 shows twelve of the 60 reference

shapes in inverted colors. As can be seen, the segmented reference shapes are quite

heterogeneous in terms of form, size, and angle. However, since we use invariant Legendre

moments for shape representation, our proposed approach compensates for the latter

two facts. As the shape of the left ventricle depends on the acquisition angle, we have a

significant inter-shape diversity within the training data set as can be seen in Figure 5.7.

Instead of specializing our algorithm with respect to one specific US imaging protocol,

we train our method for di↵erent echocardiographic acquisition protocols for the sake of

flexibility.

To train the shape prior energy we use a leave-one-out strategy, i.e., we build the shape

prior with n = 58 binary shapes, and use the two excluded delineations from the experts

for validation purposes. This procedure is necessary, since the training set needs to be

large enough to cover all shape variations of the left ventricle with respect to di↵erent

examination angles.

Qualitative evaluation

During our numerical experiments we observed an increase in robustness and segmen-

tation accuracy for the Loupas and Rayleigh noise model. For the case of the additive

Gaussian noise model it was di�cult to obtain meaningful segmentation results.

Figure 5.8 demonstrates the problem of the additive Gaussian noise model for three

di↵erent values of the regularization parameter �, which controls the influence of the

shape prior. If � is chosen too low, Algorithm 6 disregards any high-level information
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during segmentation and uses only low-level intensity values as shown in Figure 5.8a.

For � high enough this behavior changes suddenly to the opposite e↵ect: first, strong

image features are ignored as can be seen for the septal wall (left side) in Figure 5.8b.

Increasing � further, no image intensities but solely the trained shape information are

used as illustrated in Figure 5.8c.

Though one would expect this behavior for di↵erent values of �, the changes between

these three stages are abrupt and not continuous for the additive Gaussian noise model.

This makes it very hard to obtain satisfying segmentation results. However, using an

extensive parameter search it was possible to obtain segmentation results comparable to

the Rayleigh noise model in rare cases. This problematic behavior was only observed for

the additive Gaussian noise model, which leads to the conjecture, that it is a result of

the inapplicability of additive noise models for medical ultrasound data. In order to un-

derline this statement, we give further qualitative results in the following. We optimized

the parameters for the additive Gaussian noise model, such that strong image features

are still considered during segmentation, i.e., similar to Figure 5.8a.

We qualitatively compared the three di↵erent noise models on the dataset described in

Section 5.3.1 which we used to motivate the incorporation of high-level information in

the process of segmentation. We optimized all associated parameters manually with

respect to the qualitative segmentation results. Figure 5.9 shows the segmentation re-

sults of Algorithm 6 for the additive Gaussian, Loupas, and Rayleigh noise model. The

main problem for low-level segmentation algorithms is the presence of structural artifacts

(non-closedness of endocardial border) and the adjacent anatomical structure of the left

atrium at the bottom center in Figure 5.9a. The two manual delineations of the echocar-

diographic experts can be seen in Figure 5.9b and 5.9c, respectively. As demonstrated

in Figure 5.9d, the impact of the additive Gaussian noise model leads unsatisfying seg-

mentation results due to the e↵ects discussed above. In contrast to that, the Loupas

and Rayleigh noise model are able to segment the left ventricle without inclusion of

other anatomical structures, e.g., the left atrium, as can be seen in Figure 5.9e and 5.9f,

respectively.

We performed further qualitative evaluations of the three noise models and got similar

results in all cases. In general, the additive Gaussian noise model is inapplicable in

the context of the proposed variational high-level segmentation method. The Loupas

noise model needs less regularization compared to the Rayleigh noise model and thus

the segmentation incorporates more image features as can be seen in Figure 5.9e and

5.9f. This makes the segmentation result of the Loupas noise model most similar to the

manual segmentations of the two echocardiographic experts.



5.4 Incorporation of shape prior into variational segmentation framework 183

(a) US B-mode image of LV (b) 1

st physician (c) 2

nd physician

(d) Additive Gaussian noise (e) Loupas noise (f) Rayleigh noise

Fig. 5.9. US B-scan of the left ventricle (LV) with manual delineations from

echocardiographic experts and automatic segmentation results using Algorithm 6

for the noise models described in Section 3.3.1.

Quantitative evaluation

In order to quantitatively evaluate the performance of the three di↵erent noise models

from Section 4.3.3, the segmentation accuracy is measured using the Dice index as in-

troduced in (4.54). For quantification we chose eight images from the set of test images

which cover all challenging e↵ects we observed in the given data, e.g., speckle noise and

shadowing e↵ects. As mentioned above, the shape prior energy is trained using a leave-

one-out strategy excluding the validation dataset. For each tested image we optimized

the regularization parameters �, �, and � in (5.29) to maximize the average Dice index

with respect to the two manual delineations of the echocardiographic experts.

Table 5.1 shows the determined Dice indices for our numerical experiments on the cho-

sen eight datasets. The first row gives the inter-observer variability between the two

echocardiographic experts. As expected, segmentation with the additive Gaussian noise

model failed on all test images, due to the discussed problems above. In contrast to that,
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Dataset 1 2 3 4 5 6 7 8

Obsv. var. 0.9228 0.9354 0.9034 0.9310 0.9151 0.9246 0.9391 0.8435

Gaussian 0.3444 0.4470 0.3306 0.3595 0.3439 0.4754 0.2953 0.3689
Loupas 0.8245 0.7559 0.9106 0.8891 0.9030 0.8862 0.8855 0.8942
Rayleigh 0.8123 0.7838 0.7539 0.8017 0.7999 0.7693 0.7689 0.7368

Table 5.1. Dice index values of the three investigated noise models compared to

the inter-observer variability of two echocardiographic experts.

the Loupas and Rayleigh noise model lead to significantly better results. In particular,

they proved to be quite robust with respect to the initialization and the choice of regu-

larization parameters. For the Loupas noise model we obtained an average Dice index of

0.8686, compared to an average Dice index of 0.7783 for the Rayleigh noise model. This

supports our observations in the qualitative evaluation and our findings for the low-level

segmentation method in Section 4.3.7.

(a) US B-mode image of LV (b) 1

st physician (c) 2

nd physician

(d) Gaussian noise (e) Loupas noise (f) Rayleigh noise

Fig. 5.10. US B-scan of the left ventricle (LV) with manual delineations from

echocardiographic experts compared to automatic segmentation results.
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Finally, we visualize the result of dataset 4 from Table 5.1 in Figure 5.10. As can be seen

in Figure 5.10a, the cavity of the left ventricle is heavily perturbed by speckle noise, which

leads to problems for low-level segmentation methods. The manual delineations of the

two echocardiographic experts are given in Figure 5.10b and 5.10c, respectively. Again,

the additive Gaussian noise model fails to segment the left ventricle, due to the e↵ects

discussed above. This leads to the relatively low Dice index in Table 5.1. The Loupas

and Rayleigh noise model perform significantly better and compensate for the impact

of multiplicative speckle noise, as can be seen in Figure 5.10e and 5.10f, respectively.

However, to counter the heavy perturbations in this dataset, both segmentation results

had to be computed for relatively high regularization parameters � and �. This led to a

loss of segmentation accuracy as can be seen especially in the region around the mitral

valve (bottom center) in Figure 5.10e.

5.5 Incorporation of shape prior into level set methods

In this section we discuss the incorporation of the shape prior Rsh defined in (5.25) into

the level set formulations of the Chan-Vese segmentation model and the proposed dis-

criminant analysis based segmentation model from Section 4.5.1 and 4.5.2, respectively.

This extension enables us to apply the latter two approaches for high-level segmenta-

tion tasks. We highlight modifications in the numerical realization of level set evolution

in Section 5.5.1 and give implementation details with respect to parameter choice and

runtime in Section 5.5.2. Finally, we present experimental results on real patient data

in Section 5.5.3. Note that this section represents an extension of our work in [196].

For the sake of brevity, we discuss both proposed segmentation models in a single general-

ized formulation. Using the notation from Section 4.5.1, the proposed level set high-level

segmentation model can be written as,

E(c1, c2,�,�sh) =

Z

⌦

D(�(~x), f(~x)) d~x + �

Z

⌦

�0(�(~x)) |r�(~x)| d~x

+ �Rsh(�sh) +
�

2

Z

⌦

�

(1�H(�(~x)) � �sh(~x)
�2

d~x .
(5.38)

Here, D is the data fidelity of the two di↵erent level set segmentation models from

Section 4.5 given by,

D(�(~x), f(~x)) =

8

<

:

�1(c1 � f(~x))2 H(�) + �2(c2 � f(~x))2 (1�H(�(~x))) for (4.84) ,

1
2 sgn(�(~x)) (f(~x) � tO) for (4.94) .
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Segmentation is performed by solving the corresponding minimization problem,

inf {E(c1, c2,�,�sh) | ci constant, � 2 W 1,1(⌦), �sh 2 BV (⌦; {0, 1}) } . (5.39)

Note that the optimal constants c1, c2 are omitted in the case of the discriminant analysis

based level set method in (4.94) during the computation of a solution to (5.39). However,

since we want to discuss both approaches uniformly, we use the more general formulation

of the Chan-Vese segmentation model.

5.5.1 Numerical realization

As already discussed in Section 5.4.2, it is reasonable to separate the image driven terms

from the shape driven terms of (5.38). Hence, solving the minimization problem (5.39)

can be performed by using an alternating minimization scheme given by,

(cn+1
1 , cn+1

2 ) 2 argmin {E(c1, c2,�
n,�n

sh) | ci constant } , (5.40a)

�n+1 2 argmin {E(cn+1
1 , cn+1

2 ,�,�n
sh) | � 2 W 1,1(⌦) } , (5.40b)

�n+1
sh 2 argmin {E(cn+1

1 , cn+1
2 ,�n+1,�sh) | �sh 2 BV (⌦; {0, 1}) } . (5.40c)

In the case of the Chan-Vese segmentation model the optimal constants cn+1
1 and cn+1

2 are

computed iteratively depending on the current segmentation induced by �n as described

in Section 4.5.1. Hence, no adaption for the solution of the denoising problem (5.40a)

has to be realized to perform high-level segmentation.

In the following we discuss the two segmentation problems (5.40b) and (5.40c) of the

alternating minimization scheme. These subproblems are coupled via the L2 penalty

term in (5.38), which enforces that (1�H(�)) ⇡ �sh. The corresponding minimization

problems are given by,

�n+12 argmin
�2W 1,1(⌦)

⇢

Z

⌦

D(�(~x), f(~x)) d~x + �

Z

⌦

�0(�(~x)) |r�(~x)| d~x

+
�

2

Z

⌦

�

(1�H(�(~x)) � �n
sh(~x)

�2
d~x

�

,

(5.41a)

�n+1
sh 2 argmin

�
sh

2BV (⌦;{0,1})

⇢

�Rsh(�sh) +
�

2

Z

⌦

�

(1�H(�n+1(~x)) � �sh(~x)
�2

d~x

�

, (5.41b)

where the data fidelity D as given above, and based on the updated optimal constants

cn+1
1 and cn+1

2 in case of the Chan-Vese formulation.
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Analogously to Section 4.5.1, we use level set methods to compute a solution for the

minimal partition problem (5.41a), i.e., we use (�n)k as a level set function (cf. Defini-

tion 4.4.5) and update k ! k + 1 until convergence, depending on the shape �n
sh and

the optimal constants cn+1
1 and cn+1

2 .

Denoting with f(x, u, ⇠) = f(x,�,r�) the integrand of the energy functional in (5.41a)

and using the regularized functions in (4.87), the strong formulation of the Euler-

Lagrange equation (cf. Remark 2.3.16) with respect to the level set function � can

be deduced as,

0 =
n
X

i=1

@

@xi
[f⇠

i

(x, u, ⇠)] � fu(x, u, ⇠)

= �✏(�(~x))

✓

� div

✓

r�(~x)
|r�(~x)|

◆

+ D⇤(f(~x)) + � ((1�H(�(~x)) � �n
sh(~x))

◆

,

with the Cauchy boundary condition [33],

�✏(�(~x))

|r�(~x)|
@�

@~n
(~x) = 0 for all ~x 2 @⌦ .

This necessary condition has to be fulfilled by any minimizer �̂ of (5.41a) almost ev-

erywhere on ⌦ with respect to the Lebesgue measure. Note that �✏ D⇤ is the partial

derivative of the data fidelity D with respect to �, which is characterized by,

D⇤(f(~x)) =

8

<

:

�2(c
n+1
2 � f(~x))2 � �1(c

n+1
1 � f(~x))2 for (4.84) ,

tO � f(~x) for (4.94) .

As mentioned in Section 4.5.1 it is reasonable to exchange the regularized �-Dirac mea-

sure �✏ by |r�| in order to expand the evolution of � in normal direction from the

segmentation contour � to all level sets (cf. Section 4.4), i.e., globally on ⌦.

In the spirit of level set methods, we introduce an artificial temporal variable t and

compute a stationary solution to (5.41a), i.e., @�
@t = 0, by applying a forward Euler time

discretization as discussed in Section 4.4.3.

Denoting with �n
k = (�n)k, we get the following iterative update for the evolution of the

level set function,

�n
k+1(~x) = �n

k(~x)

+�t |r�n
k(~x)|

✓

� div

✓

r�n
k(~x)

|r�n
k(~x)|

◆

+D⇤(f(~x)) + � ((1�H(�n
k(~x))� �n

sh(~x))

◆

.

(5.42)
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The stability of the iterative update �n
k ! �n

k+1 in (5.42) is guaranteed for the associated

convection-di↵usion PDE [146, §4.3] by the Courant-Friedrich-Lewy condition using

Theorems 4.4.11 and 4.4.14,

�tmax
~x2⌦

(

n
X

i=1

|D⇤
sh(�, f,�sh)(~x) �x

i

(~x)|
|r�(~x)|�xi

+
2�

(�xi)2

)

< 1 , (5.43)

with D⇤
sh = D⇤(f(~x)) + � ((1�H(�n

k(~x))� �n
sh(~x)) and D⇤ as defined above. After

convergence of the iterative updates in (5.42) to a potential minimizer �̂ of (5.41a), we

reinitialize �̂ to a signed distance function and set �n+1 = �̂ for the outer loop of the

alternating minimization scheme.

Finally, we can compute an update �n+1
sh for the minimization problem (5.41b) by de-

ducing the necessary conditions for a local minimum,

0 = �
�

�sh(~x) � (1�H(�n+1(~x)))
�

+ �
@Rsh

@�sh
(�sh(~x)) .

Similar to the shape update (5.37) of the proposed variational high-level segmentation

framework, one gets,

�n+1
sh (~x) = (1�H(�n+1(~x))) � �

�

@Rsh

@�sh
(�n

sh(~x)) . (5.44)

With the help of the segmentation induced by the updated �n+1, we are able to approx-

imate �n
sh ⇡ (1�H(�n+1)) and realize the shape update by performing a single gradient

descent step in the finite dimensional shape space as indicated in (5.26).

The numerical realization of the proposed high-level segmentation level set method is

summarized in Algorithm 7. We propose to initialize the partition of ⌦ induced by

H(�0) either as a set of equidistant circles covering ⌦ or as manual initialization by

the user. Naturally, one uses �0
sh = (1�H(�0)) for the first iteration. The alternating

minimization scheme (5.40) iteratively updates the di↵erent variables until the relative

change of the partition of ⌦ falls below a specified threshold, i.e.,

||H(�n+1) � H(�n)||L2(⌦)

||H(�n+1)||L2(⌦)
< ✏ .

Note that the computation of the optimal constants in Algorithm 7 is not needed for

the case of the discriminant analysis based level method. In contrast to Algorithm

4, we are able to perform the reinitialization of � to a signed distance function after

convergence of the inner loop, since we observed that only few iterations are needed for

the computation of a minimizer �̂ of (5.41a).
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Algorithm 7 Proposed high-level segmentation level set method
S = initializeIndicator(�) (4.81)
�0 = initializePhi(S) Algorithm 3
�0
sh = (1 � H(�0))

repeat
(cn+1

1 , cn+1
2 ) = computeOptimalConstants(�k) (4.83)

repeat
�t = computeCFL(cn+1

1 , cn+1
2 ,�n

k ,�
n
sh, �, �) (5.43)

�n
k+1 = updatePhi(�n

k ,�
n
sh, �,�t) (5.42)

until Convergence
�n+1 = reinitializePhi(�n

k) (4.75)
�n+1
sh = updateShape(�n+1, �, �) (5.44)

until Convergence

5.5.2 Implementation details

In the following we describe relevant implementation details of the proposed high-level

segmentation method introduced above. Furthermore, we discuss typical parameter

settings and the estimated runtime of the method. We implemented Algorithm 7 in

the numerical computing environment MathWorks MATLAB (R2010a) on a 2⇥2.2GHz

Intel Core Duo processor with 2GB memory and a Unix (64bit) operating system.

Parameter choice

We chose the order of Legendre moment-based representations of shapes as N = 40 for

the reasons already discussed in Section 5.4.3.

For the proposed level set high-level segmentation method, we optimized the selection

of regularization parameters �, �, and � in (5.38) globally for all tested datasets with

respect to the segmentation performance as described in Section 5.5.3 below. We give

the used parameter setting for both data fidelity terms in the following.

In case of the Chan-Vese data fidelity we observed satisfying results for � 2 [500, 4000],

� 2 [700, 1500], and � 2 [1500, 3500]. For the discriminant analysis based data fidelity

we used � 2 [50, 150], � 2 [40, 90], and � 2 [50, 100].

Runtime

We give details about the expected runtime for Algorithm 7 in the following. For a

108⇥ 144 pixel image we measured the number of iterations needed to perform segmen-

tation and the corresponding runtime.
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We observed that only 20 � 30 inner iterations of Algorithm 7 are needed for conver-

gence of the inner loop. Hence, we could perform the image-based segmentation step

without any reinitialization of the level set function � during the inner loop. For the

outer iterations we observed between 70 � 120 iteration steps until convergence of the

alternating minimization scheme.

The computation of the optimal constant approximations in the case of the Chan-Vese

formulation takes approximately 1ms and the shape update only 60ms as in the case of

the variational high-level segmentation framework. Each update of the level set func-

tion � takes approximately 150ms and hence one segmentation step can be performed

in 3 � 5s. The overall time for the segmentation process with 80 outer iterations takes

approximately 230s.

5.5.3 Results

In this section we investigate the impact of the two data fidelity terms introduced in

Section 4.5 on high-level segmentation of ultrasound data. In particular, we compare

the robustness and segmentation accuracy of the traditional Chan-Vese data fidelity

term in (4.84) and the proposed discriminant analysis based term in (4.94). In order to

evaluate the segmentation results we utilized the same 60 manual delineations of the left

ventricle from two echocardiographic experts, which were already used in Section 5.4.4

in the context of the proposed variational high-level segmentation framework.

Qualitative evaluation

During our numerical experiments we observed an increase in robustness and segmen-

tation accuracy for both data fidelity terms compared to the results of the respective

low-level segmentation methods in Section 4.5.3. In general, the influence of physical

perturbations, e.g., multiplicative speckle noise and shadowing e↵ects, could be allevi-

ated by the incorporation of high-level information.

Figure 5.11 shows the segmentation results of Algorithm 7 for both data fidelity terms,

i.e., the Chan-Vese data fidelity term and the proposed discriminant analysis based

term, for the dataset introduced during the motivation of high-level segmentation in

Section 5.3.1. We recall that the main problem for low-level segmentation methods,

is the presence of structural artifacts (non-closedness of endocardial border) and the

adjacent anatomical structure of the left atrium at the bottom center in this image. The

two manual delineations of the echocardiographic experts can be seen in Figure 5.11a

and 5.11d, respectively.
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(a) 1

st physician (b) CV without shape prior (c) Ours without shape prior

(d) 2

nd physician (e) CV with shape prior (f) Ours with shape prior

Fig. 5.11. US B-mode image of the left ventricle with manual delineations of

echocardiographic experts and segmentation results using the Chan-Vese (CV) data

fidelity term and the proposed (Ours) discriminant analysis based term from Section

4.5 without shape prior (upper row) and with shape prior (lower row).

As visualized in in the top row, the level set method based on low-level information

only, leads to unsatisfying segmentation results for both data fidelity terms. Without

the shape prior introduced in Section 5.3.2, the Chan-Vese data fidelity term shows

problems in the presence of multiplicative speckle noise as can be seen for the apical

part of the left ventricle (top) in Figure 5.11b. The proposed discriminant analysis based

data fidelity obviously overcomes this problem in Figure 5.11c. However, the missing

anatomical structures in the region of the mitral valves (center) cause the segmentation

contour in both cases to grow into the cavity of the left atrium (bottom) during evolution

of the level set function.
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Dataset 1 2 3 4 5 6 7 8 avg

Obsv. var. 0.9228 0.9354 0.9034 0.9310 0.9151 0.9246 0.9391 0.8435 0.9144

CV without shape prior 0.8731 0.9075 0.7551 0.9278 0.8229 0.7551 0.8674 0.8942 0.8503
CV with shape prior 0.8695 0.9300 0.8173 0.9097 0.8536 0.7863 0.9017 0.9063 0.8718

Ours without shape prior 0.8803 0.9443 0.8132 0.9254 0.8401 0.8172 0.8934 0.9192 0.8791
Ours with shape prior 0.8715 0.9265 0.8465 0.9149 0.8616 0.9010 0.9027 0.9108 0.8919

Table 5.2. Dice index values for a quantitative evaluation of the two data fidelity

terms compared to the inter-observer variability of two echocardiographic experts.

Adding high-level information increases the robustness in presence of these e↵ects as

illustrated in the bottom row. The segmentation accuracy in the apical part (top) of

the left ventricle has increased significantly for the Chan-Vese data fidelity term when

used in combination with the shape prior as can be seen in Figure 5.11e. Still the shape

prior is not capable to enforce the segmentation contour to stay inside the left ventricle.

Increasing the regularization parameter � led to a lower influence of image intensities in

this situation, such that important image features were completely ignored. In contrast

to that, the shape prior added enough robustness to the proposed discriminant analysis

based term to obtain a good trade-o↵ between low-level and high-level information as

visualized in Figure 5.11f. Although the mitral valve leaflets (center) are part of the left

ventricle cavity in the shown result, the segmentation contour was successfully enforced

to stay close to the reference shapes.

Due to the results in Figure 5.11, one might think that the Chan-Vese fidelity leads to un-

satisfying segmentations on echocardiographic images, similar to the additive Gaussian

noise model in Section 5.4.4. However, Figure 5.11 shows the only case, for which this

approach totally failed (dataset 6 in Table 4.5). In general, we could observe reasonable

segmentation results of the Chan-Vese data fidelity term on the other datasets.

Quantitative evaluation

In order to quantitatively evaluate the performance of the two di↵erent data fidelity

terms from Section 4.5 with and without shape prior, we measured the segmentation

accuracy by using the Dice index in (4.54). We optimized the regularization parameters

�, � and � globally on the same eight chosen datasets from Section 4.5.3 and 5.4.4. The

best parameters for the Chan-Vese data fidelity term, with respect to the average Dice

index on all datasets, are � = 1600, � = 1950, � = 1000, and a ratio of �1

�2
= 0.7 for

the two L2 fidelity terms. In case of the proposed discriminant analysis based term, we

got the best results for � = 68, � = 65, and � = 75. For training of the shape prior

energy we use a leave-one-out strategy, i.e., n = 58 manual delineations, and use the two

excluded delineations for validation as already described in Section 5.4.4.
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Table 5.2 shows the determined Dice indices for our numerical experiments on the chosen

eight datasets, based on the optimal parameters determined in Section 4.5.3 (without

shape prior) and the parameters given above (with shape prior). The first row gives the

inter-observer variability between the two echocardiographic experts.

The next two rows show the segmentation performance of the Chan-Vese data fidelity

term, without and with the incorporation of high-level information, respectively. In this

case, the segmentation results improved for all images, except the first one. In total, the

average segmentation performance increased from 0.8503 to 0.8718 with respect to the

Dice index. However, this performance is still inferior to the segmentation results of the

proposed discriminant analysis based data fidelity term without shape prior.

The segmentation performance of the latter one is shown in the last two rows of Table

5.2. Although the improvement is not as clear as for the Chan-Vese data fidelity term,

the total segmentation performance increased from 0.8791 to 0.8919, which is mainly

due to the significant increase in robustness for dataset 6 shown in Figure 5.11f.

(a) 1

st physician (b) CV without shape prior (c) Ours without shape prior

(d) 2

nd physician (e) CV with shape prior (f) Ours with shape prior

Fig. 5.12. US B-mode image of the left ventricle with manual delineations of

echocardiographic experts and segmentation results using the Chan-Vese (CV) data

fidelity term and the proposed (Ours) discriminant analysis based term from Section

4.5 without shape prior (upper row) and with shape prior (lower row).
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To give a final impression on the influence of the incorporated shape prior in the presence

of multiplicative speckle noise, the segmentation results for dataset 4 in Table 5.2 with

the optimized parameters are given in Figure 5.12. As can be seen, the cavity of the left

ventricle is heavily perturbed by multiplicative speckle noise, which leads to problems for

low-level segmentation methods. The manual delineations of the two echocardiographic

experts are given in Figure 5.12a and 5.12d, respectively. When comparing the results in

both rows, it gets clear that the incorporation of the shape prior enhances the robustness

of the segmentation for both data fidelity terms. In contrast to the results in Figure

5.10, the segmentation results in Figure 5.12e and 5.12f show a higher level-of-details,

in particular in the region of the mitral valve (bottom center).

5.6 Discussion

We investigated the impact of physical noise modeling on high-level segmentation by

incorporating a shape prior for Legendre moment-based representations into the two

low-level segmentation concepts introduced in Section 4. In particular, we qualitatively

and quantitatively evaluated the use of the three di↵erent noise models from Section

3.3.1 in the context of the proposed variational high-level segmentation framework, and

both the Chan-Vese data fidelity term and the proposed discriminant analysis based

data fidelity term in the context of level set methods.

We observed that the incorporation of high-level information increases the robustness

and segmentation accuracy of the investigated methods significantly. Moreover, we found

that physical noise modeling still is very important, when using shape priors. As could

be seen in the case of the additive Gaussian noise model, the use of an inappropriate

data fidelity term can lead to complete failure of the high-level segmentation method.

Hence, we can conclude that using the proposed shape prior alone, is not a guarantee for

satisfying segmentation results in the presence of physical perturbations of US images,

e.g., multiplicative speckle noise and shadowing e↵ects.

In Section 5.4.4 we observed that the proposed variational high-level segmentation frame-

work was not able to delineate the endocardial border of the left ventricle, when used in

combination with the additive Gaussian noise model. One reason for this behavior might

be that the L2 data fidelity term leads to much higher values of the energy functional

compared to the Loupas and Rayleigh data fidelity term. As a consequence, the regu-

larization parameter � has to be chosen accordingly higher to regulate deviations from

the reference shape. Since these deviations are penalized also with a quadratic energy,

even small changes between the binary masks of two shapes lead to large penalties.
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Additionally, the global convex segmentation approach in (5.34) prevents local minima

during segmentation, favoring the smallest possible energy value. This observation also

explains, why even small changes of the parameter � lead to totally di↵erent segmenta-

tion results, as these penalties contribute quadratically and are even amplified by the

relatively high value of �. To overcome this drawback, we altered the L2 penalty term to

allow for small changes by using a Gaussian smoothing filter g� with standard deviation

�, i.e.,

P (�,�sh) = � ||g�(�) � g�(�sh)||L2(⌦) .

First experimental results indicate that this approach alleviates the observed e↵ect and

enables high-level segmentation of medical ultrasound data using the additive Gaussian

noise model. This motivates the investigation of other penalty functions for shape prior

segmentation, e.g., a L1 distance measure, which is known to be more robust in the

presence of possible outliers.

In order to give a final statement on which of the two proposed high-level segmentation

performed better for the task of automatic delineation of the left ventricle, we recall

the quantitative results from Section 5.4.4 and 5.5.3, and show the two best methods

in Table 5.3. As can be seen, the level set high-level segmentation method using the

proposed discriminant analysis based data fidelity term shows in general better results

for the tested eight datasets compared to the variational framework with the Loupas

noise model. Although the latter one outperforms the level set method on datasets

3 and 5 in Table 5.3, the average segmentation performance is lower. One possible

reason for this is the existence of many local minima during the update of the level set

function � in (5.42). When properly initialized, level set methods benefit from this fact,

as these local minima often correspond to the expected solution, when using constant

approximations for fore- and background regions.

Dataset 1 2 3 4 5 6 7 8 avg

Obsv. var. 0.9228 0.9354 0.9034 0.9310 0.9151 0.9246 0.9391 0.8435 0.9144

Loupas 0.8245 0.7559 0.9106 0.8891 0.9030 0.8862 0.8855 0.8942 0.8686
Discriminant 0.8715 0.9265 0.8465 0.9149 0.8616 0.9010 0.9027 0.9108 0.8919

Table 5.3. Dice index values for comparison of the two best methods.

In future work, it would be interesting to include temporal information, using consecu-

tive ultrasound frames, to increase the robustness of segmentation results, since experts

from echocardiography also heavily depend on these information when evaluating exam-

ination data. Clustering of training data in terms of shape variations, combined with

an user-triggered selection of the application, would further increase the segmentation

accuracy and lead to better results. In particular, this is needed for the segmentation of

echocardiographic data in rare pathological cases.
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6
Motion analysis

In this chapter we deal with the challenge of motion analysis, which is a widely studied

field in computer vision. We want to discuss di↵erent paradigms of motion estimation

and highlight various solutions to this problem successfully used in medical image anal-

ysis. Due to the characteristics of medical ultrasound imaging discussed in Chapter 3,

we discover that motion analysis based on single image intensity values and a L2 data fi-

delity leads to wrong correspondences of image regions and thus to erroneous results. We

prove this observation in a statistical setting and propose an alternative data constraint

using histograms as discrete representations of empirical distribution functions. The

advantage of this approach is demonstrated in the context of optical flow computation,

and a novel algorithm based on local cumulative histograms is proposed. In comparison

with the popular variational model of Horn-Schunck we show more robust and accurate

results for optical flow on synthetic and real patient data from medical ultrasound.

6.1 Introduction

Motion analysis is a major field in computer vision and refers to a family of problems aris-

ing when analyzing video data, i.e., image sequences. One could say that motion is one

of the most important features in image understanding, since human visual perception

itself highly depends on motion detection. Hence, it is no surprise that researchers have

spent lots of e↵ort to improve motion estimation techniques in the last three decades.

Video analysis tasks in computer vision have been of high interest from the very begin-

ning, but were merely manageable due to the restricted possibilities of computers in the

early past. Clearly, motion can be estimated from the temporal information of an image

sequence and can be used for understanding and interpretation of image data.
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Today automatic motion analysis can be found in various commercial and scientific ap-

plications, such as tra�c flow control, video surveillance systems, and even sensors for

driver-less autonomous cars. More popular examples can be found in entertainment

products such as the Microsoft Kinect
TM

or computer-generated imagery movies in cin-

ema.

6.1.1 Tasks and applications of motion analysis

The tasks of motion analysis are manifold and can range from the simple detection of

movements, up to the analysis of objects’ trajectories. Parameters deduced from motion,

e.g., acceleration or deformation, can help to characterize objects in the process of image

understanding. Following the categorization in [180, Section 9.1], we can distinguish the

following situations,

• Still imaging sensor, single moving object, and constant background,

• Still imaging sensor, multiple moving objects, and constant background,

• Moving imaging sensor and constant scene,

• Moving imaging sensor and multiple moving objects.

To give illustrative examples for these four categories we link the first situation to typical

motion sensors, which are often used to automatically turn on the light upon detection

of significant motion. The last and certainly most challenging situation in the list can

occur, e.g., in automatic control of an autonomous car, where not only the vehicle

itself is moving but also the other tra�c participants. Although there exist applications

of motion estimation using multiple imaging sensors, such as 3D tracking of football

players [222], we restrict our discussion to the case of a single imaging sensor. Since

we are interested in the assessment of organic motion (especially myocardial motion)

in medical US data, we assume a fixed transducer position during the process of image

acquisition and hence we concentrate on the first two situations above.

The problem of motion analysis can be further refined to di↵erent sub-tasks occurring in

every-day applications. The most simple problem in this context is motion detection,

which is often realized by image subtraction methods (e.g., cf. [180, Section 9.2]). By

using a threshold for the absolute di↵erence of two consecutive images of a static scene,

constant background pixels can be filtered out, leaving possible candidates for detected

motion. Although one might naturally think about video surveillance as possible appli-

cation of this technique (cf. [25]), it is also used in astrophysics for detection of moving

asteroids and stellar objects in the nearly static night sky [4, 76].
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Motion analysis

direct methods indirect methods
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...
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Template matching
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Fig. 6.1. Overview of direct and indirect motion estimation methods.

If one is able to identify objects within the scenery, e.g., by segmentation, motion of these

objects can be recorded using tracking techniques (cf. [224]). One popular approach

for tracking is based on template matching, which is used to perform correspondence

analysis of image blocks (cf. [24]). Here, a reference model called ’template’ is compared

to possible candidates and the best match with respect to a certain similarity measure

is determined.

The last sub-task to mention is the computation of a dense field of motion vectors

for two given images. This can be done by using e.g., image registration (cf. [98, 136]) or

optical flow methods (cf. [169, 188]). As we point out in Section 6.1.3 these methods are

more suitable for medical imaging data, due to the ubiquitous presence of noise artifacts.

Furthermore, we need all motion information available in US data in order to compute

medical parameters from the given images. Hence, we discuss optical flow methods in

more detail in Section 6.2.

In summary, algorithms for motion analysis can be separated into two classes of ap-

proaches from a methodological point-of-view. The first class operates immediately on

the intensity values of two given images to compute the inherent motion between them

and thus is called direct. The second class is denoted as indirect, because algorithms

from this class calculate image features first and then perform a correspondence analysis

to estimate motion. Figure 6.1 shows a scheme illustrating this categorization.

6.1.2 How to determine motion from images?

In general, motion manifests itself by local intensity changes in a given sequence of

images I1, . . . , Im with It : ⌦ ⇢ Rn ! R, 1  t  m. If we restrict ourselves to image

sequences with static illumination properties and insignificant noise level, these changes

result from motion within the imaged scenery.
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However, the inverse conclusion does not hold, as gets clear in the popular example

of an image sequence visualizing a rotating sphere with homogeneous intensities and

missing texture. Although the sphere is rotating around its centroid and hence moving,

no intensity changes can be observed. A less synthetic problem of motion estimation

is the aperture problem (cf. [180, Section 9.3.5]). This situation occurs in many real

life applications, in particular for homogeneous image regions. To compensate for this

problem, additional constraints have to be set during motion estimation as described in

Section 6.2.2.

Many approaches for motion estimation are based on the basic assumptions of static

illumination properties and low noise level, since these assumptions are appropriate for

most real life applications. However, as we discuss in Section 6.3.1, there are situations

where this cannot hold, and hence one has to think about alternative model assumptions.

Another common assumption in motion estimation is that moving objects in an image

scenery have smooth motion trajectories. If the sampling rate of the imaging device is

high enough, this smoothness leads to only small changes in consecutive images.

In this context it is reasonable to introduce a quantity that is capable to describe motion

between two given images.

Definition 6.1.1 (Motion field). Let ⌦ ⇢ n be an open and bounded subset. A vector

field V : ⌦ ! Rn, ~x 7! ~u(~x) representing a projection of the d-dimensional motion of

image points ~x 2 ⌦, d � n, for a given image It at time point t with respect to a reference

image It+�t is called motion field. The motion vectors ~u(~x) represent the displacement

between corresponding image points in It and It+�t. For the sake of brevity we use the

notation ~u = ~u(~x). Typically, we have situations where n 2 {2, 3}, d = 3, and �t = 1.

As we are mainly interested in variational methods for medical imaging in this thesis,

we focus on mathematical models for motion estimation of the form,

inf
~u2X

D(~u) + ↵R(~u) . (6.1)

In the terminology of inverse problems, X is an appropriate chosen Banach space, D is

a data fidelity term measuring the similarity of corresponding image points, and R is

an regularization functional used for the incorporation of a-priori knowledge about the

motion field V . Note that the regularization R is in general necessary to guarantee the

well-definedness of the associated inverse problem. In this context we mainly concentrate

on convex functionals to guarantee the existence of solutions in the calculus of variations

(cf. Section 2.3). In Sections 6.2.3 and 6.2.4 we discuss di↵erent data fidelity terms and

regularization terms in the case of optical flow estimation, respectively.
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6.1.3 Motion estimation in medical image analysis

Motion estimation is an essential tool in processing and analyzing medical image data.

It is used in a wide range of imaging modalities and bio-medical applications. For in-

stance, it can be used to improve medical data by reducing blurring e↵ects induced by

motion.

In positron emission tomography (PET) these methods are successfully used in combina-

tion with so-called ’gating-techniques’. Here, the measured data is partitioned into dif-

ferent motion phases (so called ’gates’) using bio-signals before reconstruction [27], e.g.,

respiratory motion. In order to obtain motion compensated PET data with su�cient

signal statistics, di↵erent motion estimation methods have been established, which use

a-priori knowledge about the data and specific e↵ects typical for PET data [52, 81, 195],

e.g., the assumption of mass-preservation for accumulated PET tracers.

Determining the motion of organs and other structures within a patient’s body is also

useful for the assessment of medical parameters, e.g., the myocardial strain in MRI and

US imaging [124]. These measured parameters are the foundation of various examination

protocols used by physicians in hospitals every day. Several studies (cf. [14] and refer-

ences therein) showed that automatically computed medical parameters are feasible for

the characterization of disturbed motion mechanics of the left ventricle, and furthermore

describe specific pathologies. As this is an interesting field of research, we concentrate

on the left ventricle of the myocardium in the following sections.

In order to estimate motion in medical ultrasound data (and especially in echocardio-

graphic data) fully automatically, di↵erent approaches have been proposed in the liter-

ature. The majority can be classified as direct methods according to the categorization

in Section 6.1.

An example for an indirect approach using SIFT features and shape information can

be found in [132]. Although indirect methods tend to be of lower computational e↵ort

compared to direct methods and are locally more accurate with respect to registration

of image features in many cases, they are very dependent on the underlying algorithms

for feature extraction and segmentation.

The choice of direct methods for motion estimation in ultrasound images is quite nat-

ural, as a robust correspondence analysis is hard to realize on real US data, due to the

impact of multiplicative speckle noise and shadowing e↵ects. Hence, most authors prefer

to realize motion estimation using global, direct approaches, e.g., registration or optical

flow methods, and compensate for the discussed e↵ects with the help of regularization

techniques. For this reason we also concentrate on the latter approach in this thesis and

give a detailed introduction to optical flow methods in Section 6.2.5.



202 6 Motion analysis

Fig. 6.2. Three di↵erent types of left ventricular myocardial wall motion during

systole in an illustration adapted from [14].

Motion mechanics of the human left ventricle

Before discussing di↵erent approaches for motion estimation of the left human ventricle,

it is important to understand the mechanics of the left ventricle during the myocardial

cycle. Since the main interest in this work is set on motion estimation between subse-

quent images, the full motion mechanics of the human heart cycle are described only

roughly in the following. For a full description on this topic we refer to [67, §4.2.1].

Figure 6.2 illustrates the three di↵erent types of left ventricle wall motion during systole.

First, there is a radial compression of the ventricular wall which is further supported

by a circumferential twist of the left ventricle. This mechanical e↵ect is comparable to

squeezing out a sponge. The last type of motion is caused by contraction of the muscle

fibres within the myocardial wall of the left ventricle in a longitudinal direction. This

reduces the distance between base and apex of the ventricle and causes the myocardium

to lift during systole. The longitudinal motion mechanics are believed to be primarily

responsible for the ejection of blood from the ventricular chamber into the left atrium.

Each type of deformation is measured by the dimensionless quantity strain. Strain is

defined as the change of myocardial fibre length during stress at end-systole ls compared

to its original length in a relaxed state at end-diastole ld, i.e., (ls� ld) / ld. Note that for

two-dimensional ultrasound imaging it is not possible to acquire the echocardiographic

data in a way that all three types of strain are captured within the image sequence,

since the myocardial motion can not be described in a two-dimensional plane, but is

rather comparable to an opposing three-dimensional twist. As discussed later, this leads

to severe problems in motion estimation if not taken into account.

A relatively new approach to solve these problems is 3D speckle tracking echocardiogra-

phy, using novel matrix transducer technologies [159].
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Speckle tracking

Motion estimation on echocardiographic data is often referred to as speckle tracking

echocardiography (STE) in clinical environments, and plays an important role in di-

agnosis and monitoring of cardiovascular diseases and the identification of abnormal

cardiac motion [15]. By tracing the endo- and epicardial border of the myocardial cham-

bers, physicians assess important medical parameters, e.g., the strain of left ventricular

regions. Based on these measurements, abnormal motion of the myocardium can be

identified and quantified, hence helping in computer aided diagnosis in both clinical and

also preclinical environments (e.g., [15, 50, 187]). Next to measurements of the atrial

chambers’ motion, many diagnosis protocols are specialized for STE of the left ventricle,

e.g., for revealing myocardial infarctions and scarred tissue [15].

Typically, STE is done by manual contour delineation performed by a physician, followed

by automatic contour tracing over time [14]. STE has been introduced in [124, 162] and

is based on the idea of tracking clusters of speckle that appear to be stable over time.

This semiautomatic o✏ine-procedure is time consuming, and it gets clear that speckle

tracking has problems in low contrast regions and in the presence of shadowing e↵ects,

due to the loss of signal intensity.

Figure 6.3 illustrates the myocardial motion of a human heart from an TTE examination

acquired with a X51 transducer on a Philips iE33 ultrasound system (⇠ 150µm2⇥350µm

resolution @2.5MHz). Figure 6.3a - 6.3c show the contraction of the left ventricle at three

di↵erent time points during systole in a parasternal short-axis view. As can be seen, the

ring-shaped muscle of the left ventricle narrows during contraction and simultaneously

gets thicker due to compression of the muscle fibres, which can be explained by the

radial and circumferential motion mechanics discussed above. Figure 6.3d - 6.3f show

the corresponding time points from an apical four chamber view. Here, the typical lift of

the left ventricle during contraction and the distance reduction between base and apex

due to longitudinal strain can be seen quite obviously. Note that the e↵ects discussed in

Chapter 3, i.e., speckle noise and shadowing e↵ects, occur and also disappear over time.

This makes speckle tracking a very challenging task and motivates the development of

novel approaches for automatic motion estimaton in medical ultrasound imaging.

Current approaches in medical imaging

Optical flow methods have been used in medical imaging and especially for speckle

tracking recently. We give a short discussion of optical flow approaches from di↵erent

medical imaging modalities and in particular from medical ultrasound imaging in the

following.
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(a) End-phase of diastole (b) Mid-phase of systole (c) End-phase of systole

(d) End-phase of diastole (e) Mid-phase of systole (f) End-phase of systole

Fig. 6.3. Myocardial motion during systole of the human heart in medical US.

(a)-(c) Left ventricular contraction during systole in parasternal short-axis view.

(d)-(f) Left ventricular contraction during systole in apical four-chamber view.

In [11] Becciu et al. apply 3D optical flow algorithms on cardiac MRI data for motion

analysis free of the aperture problem. They propose to track stable multiscale features

induced by MR tagging techniques after a harmonic filtering in the Fourier space. They

evaluate their method on phantom data and real patient data.

One of the first works on optical flow for positron emission tomography can be found in

[52]. In order to reduce spatial blurring and motion artifacts of the reconstructed PET

data, Dawood et al. propose to use gating techniques in combination with a local-global

optical flow method which allows for discontinuity preservation along organ boundaries.

The computed motion field is used to warp single gates to a reference gate and thus get a

motion-less reconstruction of the data. The latter approach has been further developed

by incorporating a-priori knowledge about the data and its specific e↵ects. In [195] we

proposed a heuristic method that takes into consideration the partial volume e↵ect in

PET images during estimation of optical flow. Improvements could be shown on clinical

patient data as well as on preclinical data sets of mice.

Comparable to the work on novel registration constraints by Gigengack et al. in [81],

Dawood et al. propose in [51] to use a mass-conservation constraint to compensate
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for partial volume e↵ects in cardiac PET data. Using 3D PET patient data, the high

accuracy of this approach has been shown with respect to myocardial thickness and

correlation of the motion compensated gates.

As we are especially interested in optical flow methods for echocardiographic data,

we discuss some of these approaches in more detail in the following. In the beginning of

real time 3D echocardiography, Veronesi et al. proposed in [205] the idea of using optical

flow for this new imaging modality in order to overcome the problem of left ventricle long

axis foreshortening, which is a severe problem in two-dimensional echocardiography, as

it is hard to obtain images of the left ventricle from the correct acoustic window. They

propose to use the classical Lucas-Kanade algorithm (see (6.21)) and track five feature

points, which have been manually initialized by an clinical expert for the first frame.

Using optical flow, the authors compute the estimated positions of these feature points

using the motion field for the subsequent US frames and calculate the long axis of the

left ventricle dynamically in each time frame. Thus, this method is semi-automatic and

is bounded to the application of long axis measurement. This restricts its usefulness for

motion analysis of echocardiographic data for the goal of heart disease diagnosis.

Duan et al. propose to use a region-based matching technique for optical flow in 4D ultra-

sound data of the heart in [60], assuming that the displacement in small neighborhoods is

similar. The motivation for this approach and against di↵erential methods, is explained

by a higher robustness under the influence of noise. For each voxel a displacement vector

is estimated by maximization of the cross-correlation distance measure within a certain

search window. The proposed algorithm is relying on an initialization by manual de-

lineations of the endo- and epicardial contours by clinical experts and hence has to be

classified as semi-automatic. The authors use the estimated motion field to compute

medical parameters, i.e., strain and displacement, and test their method on 4D data

sets of dog and canine hearts. Their findings are described as being in strong agreement

with predictions of cardiac physiologists.

In [174, 198] we investigated the impact of the fundamental assumption of optical flow

algorithms, the ’Intensity Constancy Constraint’ (ICC), for medical ultrasound data. It

is shown mathematically that the popular squared Euclidean distance yields erroneous

motion estimation results when used in combination with the ICC in presence of mul-

tiplicative speckle noise (cf. Section 6.3.1). As an alternative approach we propose to

use local cumulative histograms as discrete representations of probability density func-

tions in local neighborhoods. By exchanging the fundamental assumption of the ICC

the results of optical flow estimation on synthetic and real patient data in 2D and 3D

could be significantly improved. The proposed algorithm does not need any manual

initialization and thus can be classified as a fully automatic method. In Section 6.3 the

latter approach is described in more detail.
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Registration is used in the whole spectrum of medical imaging modalities and in its

many di↵erent applications. Hence, it would go beyond the scope of this work to give

an extensive overview of registration methods in medical imaging. However, we give a

short discussion of recent and successful methods in medical imaging and especially for

medical US data in the following.

For a comprehensive review on non-rigid registration techniques see, e.g., [98, 136]. A

more specific overview on registration methods for medical ultrasound data is given by

Wachinger in [209].

In [131] Lu et al. propose a Bayesian framework for integrated segmentation, non-rigid

registration, and tumor detection in cervical MR data for cancer radiation therapy.

Using this algorithm, they are able to generate a tumor probability map based on the

computed non-rigid transformation in order to compensate for deformations of soft tissue

organs during the process of external beam radiation therapy.

Another appreciable work is given by Gigengack et al. in [81] and focuses on motion

correction in positron emission tomography using a-priori knowledge about the data.

Particularly, a mass-conservation constraint is incorporated into the estimation of a

feasible transformation between two di↵erent PET gates and the superiority of this

approach compared to similar works is clearly demonstrated.

Recently, registration techniques have also been used for medical ultrasound data.

In [92] Hefny et al. propose a discrete wavelet transform and a multiresolution pyramid

to build up energy maps of robust details in these transformed images. Using variational

methods, a transformation based on these energy maps is estimated between two corre-

sponding ultrasound images. The authors validate their method on synthetic and real

patient liver data.

As already mentioned above, using indirect methods for ultrasound image registration

is quite rare due to the inherent noise artifacts. For this reason we refer to the approach

presented by Lu et al. in [132], in which the authors propose to use shape information

by semi-automatic segmentation in combination with a correspondence analysis of lo-

cal SIFT features. This information is embedded in a Bayesian framework based on a

viscous fluid model and the method is tested both on synthetic data as well as on real

patient data of the human kidney and breast.

Finally, Piella et al. propose a novel registration framework in [157] for multiple views

from 3D ultrasound sequences to estimate the myocardial motion and strain. The com-

puted transformation is constrained to be di↵eomorphic and the corresponding velocity

field is modeled as a sum of B-spline kernels. The authors aim to calculate a smooth

and consistent motion field using all available spatial-temporal information available and

hence compensate for noise artifacts and shadowing e↵ects in the data.
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(a) Translation (b) Rotation (c) Zoom-out

Fig. 6.4. Three di↵erent examples of typical motion fields.

6.2 Optical flow methods

Optical flow (OF) methods were first proposed for estimating motion in medical imaging

in the beginning of the 1990s, and have been intensively investigated and specialized

for di↵erent medical imaging modalities and applications since then. Before discussing

fundamental data constraints for optical flow methods in Section 6.2.2 and regularization

functionals in Section 6.2.4, we have to introduce the term optical flow properly first.

Definition 6.2.1 (Optical flow). Optical flow, or sometimes also called image flow,

is a motion field (cf. Definition 6.1.1) computed under certain assumptions about the

given image sequence I1, . . . , Im. Hence, an optical flow vector ~u 2 n represents a

correspondence between two image points ~x 2 It and (~x+~u) 2 It+�t, respectively, fulfilling

specific constraints on the image data.

From a physical point-of-view the optical flow vector ~u can be interpreted as a velocity

vector determining the speed of an image point ~xmeasured for the time interval [t, t+�t].

Thus, the following relationship holds,

velocity ~u =̂
d~x

dt
. (6.2)

To illustrate typical motion fields Figure 6.4 shows three di↵erent examples of two-

dimensional vector arrays. In Figure 6.4a one can see a homogeneous motion field of

horizontal vectors representing a translation of a plane surface to the left side. If this

plane surface rotates counter-clockwise around its center, a motion field similar to Figure

6.4b is formed. The last example in Figure 6.4c demonstrates the projection of a three-

dimensional movement on the image plane, as the planar surface increases its distance

to the image sensor. This zooming-out e↵ect causes near objects to have longer velocity

vectors than objects far away from the image sensor. Note that this observation makes

it possible to gain depth-information from motion fields and hence it can be used in

computer vision for segmentation and image understanding tasks (cf. [43, 158]).
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6.2.1 Preliminary conditions

In order to apply optical flow methods for motion analysis, we have to mention two basic

conditions that have to be fulfilled for most OF algorithms. Since these two conditions

are given in a majority of real life applications, they are often assumed implicitly in

literature. However, there are exceptional situations for which these conditions are

violated and thus special solutions have to be found.

The first condition is quite natural, as we assume the given images I1, . . . , Im to be

subsequently time-correlated, i.e., with increasing index 1  j  m each image Ij shows

the same scenery at a progressing time point. Since most image sequences to be analyzed

are ordered as progressing time line, e.g., video sequences, this assumption is valid.

The second condition to mention is a constant illumination of the imaged scenery and

no changes in the reflectivity of objects over time. This assumption is more critical as

it does not allow light sources to be turned on or o↵ in the scenery. Furthermore, the

shadow of a moving object can change the illumination properties of its surrounding and

hence also violate this condition. However, if the time di↵erence �t between two images

It and It+�t is relatively small, the di↵erence is marginal enough to also fulfill the second

condition at least for subsequent images. For dynamic illumination properties within

a given image sequence, several adapted optical flow methods have been proposed (cf.

[10] and references therein).

For medical ultrasound image sequences these conditions are only partially fulfilled, due

to the presence of shadowing e↵ects induced by acoustic reflectors as described in Section

3.3. In these sepcial situations we expect severe problems for motion estimation, if not

taken into account properly.

6.2.2 Data constraints

As discussed in Section 6.1.2, motion between corresponding image points is estimated

under certain assumptions about the data. Additional data constraints are necessary,

due to the ambiguity of possible correspondences of image points. In general, it is

possible to apply multiple constraints at once (cf. [152]). Note that strict constraints

might help to overcome the problem of non-uniqueness and outliers in the data, but

simultaneously reduce the space of possible solutions drastically and hence may result

in unsuitable motion fields. Thus, it is important to have a fundamental understanding

of the data one is dealing with and to draw appropriate conclusions for suitable data

constraints. In order to identify corresponding image points over time, we discuss several

possible data constraints based on image intensities and spatial derivatives for optical

flow in the following.



6.2 Optical flow methods 209

For the sake of clarity, we discuss these optical flow constraints for two-dimensional

images, i.e., ~x = (x, y) 2 R2 and ~u = (u, v) 2 R2 for n = 2 in Definition 6.1.1.

Note that without loss of generality, analogous constraints exist for higher dimensions.

Furthermore, we assume that we investigate motion between two consecutive images It

and It+1, i.e., �t = 1.

Intensity constancy constraint

The most prominent assumption used for optical flow estimation is that the intensity of

two corresponding pixels is constant, i.e.,

I(x, y, t) = I(x+ u, y + v, t+ 1) . (6.3)

The assumption in (6.3) is known as intensity constancy constraint (ICC) and implies

that the illumination does not change between the corresponding images (as discussed

in Section 6.2.1).

In practice, the ICC may be violated on real data, e.g., due to the presence of noise and

occlusions. However, the influence of noise can be alleviated by smoothing the images

and using appropriate regularization functionals as discussed in Section 6.2.4 below. As

most optical flow methods are based on this data constraint, we discuss the derivation

of a partial di↵erential equation used for OF computation in the following. The basic

idea is a Taylor series approximation of first order,

I(x+ u, y + v, t+ 1) = I(x, y, t) + rI(x, y, t) ·
✓

dx

dt
,
dy

dt
,
dt

dt

◆T

+ O(@↵I)(x, y, t)

⇡ I(x, y, t) + rx I(x, y, t) ·
✓

dx

dt
,
dy

dt

◆T

+
@I

@t
(x, y, t) ,

where O(@↵I) denotes higher order terms, and ↵ is a multi-index with |↵| > 1. Using

(6.2) and the ICC in (6.3) this approximation can be formulated as partial di↵erential

equation called optical flow equation or also image flow equation,

0 = rx I(x, y, t) · (u, v)T +
@I

@t
(x, y, t) . (6.4)

Here, ~u = (u, v)T is the unknown velocity vector from (6.2).

Remark 6.2.2. In fact, (6.4) can be interpreted as convection equation, which describes

a process similar to the transport equation (4.67) in Section 4.4.1 in the context of level

set functions. However, in this situation the velocity field V := (u, v) is unknown, while

for the evolution of a segmentation contour �, the velocity is given.



210 6 Motion analysis

As mentioned, this approximation induces another common constraint on the motion

between two consecutive images It and It+1. In this situation, one has to assume small

motion vectors ~u = (u, v), as the first order Taylor series approximation represents a

linearization which is only valid in a small neighborhood around (x, y, t) to some degree.

Hence, (6.4) is feasible for applications with motion vectors smaller than approximately

1� 2 pixels, which should apply for image sequences with high temporal sampling rate.

To overcome this restriction for images with large motion vectors, multi-grid techniques

can be used (cf. Section 6.3.5).

As can be seen, the optical flow equation (6.4) yields an underdetermined system of

equations, since there is only one condition for two unknowns (in general n unknowns).

This degree of freedom makes (6.4) an ill-posed problem, which manifests in form of

the aperture problem discussed in Section 6.1.2. In order to still estimate OF with

this approach, one has to apply further constraints on the motion field or formulate the

problem with the help of variational methods and add appropriate regularization terms

(cf. Section 6.2.4). In Section 6.2.5 we discuss two popular methods which implement

these solutions, i.e., the Lucas-Kanade method and the variational Horn-Schunck model.

Intensity constancy constraints of higher order

Since we are especially interested in suitable data constraints for OF estimation between

medical ultrasound images, we investigate further intensity-based constraints of higher

order, i.e., we discuss data constraints for local derivatives of first and second order.

Note that the popular ICC in (6.3) can be interpreted as constraint for local derivatives

of order zero. An overview of optical flow methods based on higher order constancy

constraints can be found in [10, 152] for instance.

Naturally, a constancy constraints for first-order derivatives of corresponding pixels

is the gradient constancy constraint,

rI(x, y, t) = rI(x+ u, y + v, t+ 1) , (6.5)

which is used to match corresponding image gradients in It and It+1. This is especially

useful in situations in which there is a global change in overall brightness between two

images, since the image gradient is invariant under these changes [20, 152]. For an

experimental evaluation of the gradient constancy constraint in (6.5) we refer to [66].

Disregarding directional information of the local gradient, another possibility is the

divergence constancy constraint,

div I(x, y, t) = div I(x+ u, y + v, t+ 1) . (6.6)
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For data constraints based on second-order derivatives we shortly discuss two useful

assumptions from the literature. The first one is the Hessian constancy constraint,

HI(x, y, t) = HI(x+ u, y + v, t+ 1) , (6.7)

which matches second order derivatives. Like the gradient constancy constraint it con-

tains directional information and thus leads to more robustness in the estimation of

optical flow, when used in combination with the ICC.

Analogously to the divergence constancy constraint in (6.6), one could also use a Lapla-

cian constancy contraint, which is given by,

�I(x, y, t) = �I(x+ u, y + v, t+ 1) . (6.8)

Although directional information is neglected by this formulation, it is suitable for image

point correspondences along edges as it is invariant under directional changes [152].

In general, one can expect that the high-order data constraints presented in this Section

yield a larger sensitivity to noise. Furthermore, with increasing order of the derivatives

the part of the images where a data constraint becomes zero and hence provides no infor-

mation also grows. Thus, these constraints are usually combined with other appropriate

assumptions as proposed, e.g., in [66, 152].

As we show in Section 6.3.1, the ICC and its discussed variants based on spatial deriva-

tives are not suitable for medical ultrasound data, due to the fact that they are mainly

based on only one pixel and its direct neighbors. Therefore, they are not robust under

a high level of noise, as e.g., multiplicative noise discussed in Section 3.3.1.

6.2.3 Data fidelity

To measure the similarity between corresponding image points, di↵erent data fidelity

terms have been proposed. Here, we focus on terms of the form,

D(~u) = d
�

L I(~x+ ~u, t+ 1), L I(~x, t)
�

, (6.9)

for which L is a linear di↵erential operator (cf. constancy constraints of higher order

discussed above) and d is a similarity measure on the image domain ⌦.

In the following we give a short overview of common data fidelity terms for optical flow

data constraints. For the sake of simplicity, we restrict our discussion to the popular

ICC from (6.3), i.e., the linear di↵erential operator L = idRn .
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L2 data fidelity term

Most optical flow algorithms in literature use a squared L2 data fidelity term for OF

estimation [10],

D(~u) = || I(~x+ ~u, t+ 1) � I(~x, t) ||2L2 =

Z

⌦

|I(~x+ ~u, t+ 1) � I(~x, t)|2 d~x . (6.10)

Usually, one minimizes the data fidelity term in (6.10) with respect to the unknown

motion vector ~u to find corresponding image points. However, since the inner part of

the L2 norm is non-linear in ~u this leads to problems when minimizing D.

For this reason, the linear first-order Taylor series expansion, known as optical flow equa-

tion (cf. (6.4)), is used instead, e.g., in [10, 22, 99, 134, 152]. Hence, the approximated

L2 data fidelity term reads as,

D(~u) = ||r~x I(~x, t) · ~u +
@I

@t
(~x, t) ||2L2 =

Z

⌦

|r~x I(~x, t) · ~u +
@I

@t
(~x, t)|2 d~x . (6.11)

The data fidelity term in (6.11) is popular, since it is robust against outliers and penalizes

small intensity changes not too strict [10]. Furthermore, it is convex in ~u and thus is

preferable with respect to optimization and the calculus of variations in Section 2.3.

The authors in [11] propose to use the squared L2 norm of the optical flow as only energy

to optimize in combination with a constraint for a finite set of known flow vectors.

L1 data fidelity term

In some situations it is more appropriate to use a di↵erent distance measure for OF

computation. The L1 data fidelity term for optical flow is defined as,

D(~u) = || I(~x+ ~u, t+ 1) � I(~x, t) ||L1 =

Z

⌦

|I(~x+ ~u, t+ 1) � I(~x, t)| d~x . (6.12)

Analogously to the L2 fidelity term discussed above, it is common practice to replace

the ICC by the linear optical flow equation. As the L1 norm is not di↵erentiable in 0,

there are numerical challenges in the realization of respective algorithms that minimize

the energy induced by (6.12).

Approximated L1 data fidelity term

Due to the fact that the minimization of the data fidelity term in (6.12) is technically

challenging, an approximated variant of L1 data fidelity has been proposed, e.g., in [22].
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For this reason, it is possible to use non-quadratic penalizer functions of the form,

 (d2) = 2�2

s

1 +
d2

�2
, (6.13)

for which beta is a fixed scaling parameter and one can set d2 = (rxI(~x, t)·~u+It(~x, t))2 as

in (6.11). This function is di↵erentiable and strict convex in d, which yields advantages

for the minimization of the non-quadratic data fidelity term,

D(~u) = || (d2)||L1 = 2�2

Z

⌦

�

�

�

�

�

�

s

1 +
(r~x I(~x, t) · ~u + It(~x, t))

2

�2

�

�

�

�

�

�

d~x . (6.14)

For e.g., � = 0.5, the penalizer  in (6.13) behaves very similar to the absolute value

function, but is simultaneously di↵erentiable in 0. For this reason it is often used as

approximation of the L1 data fidelity term in (6.12).

From a statistical point-of-view, using the non-quadratic data fidelity term in (6.14) can

be regarded as applying methods from robust statistics, where outliers are penalized less

severely than in quadratic approaches. Note that in general any Lp norm could be used

as similarity measure, but since most works in literature use p 2 {1, 2}, we focus our

discussion on the latter cases.

6.2.4 Regularization

As discussed in Section 6.2.2, an algorithm that only uses data constraints for OF es-

timation is not capable to determine an unique solution, due to the aperture problem,

and hence the problem is still ill-posed. Further constraints on the optical flow have to

be defined which introduce a dependency between neighboring pixels [152] and simul-

taneously alleviate the violation of constancy constraints (cf. Section 6.2.2) by noise,

outliers, and occlusions. These additional regularization terms for the optical flow are

often called smoothness assumptions and help to incorporate a-priori knowledge about

the expected solution of OF estimation.

As the focus in this chapter is the investigation of feasible data constraints for motion

estimation, we only discuss three di↵erent convex regularization functionals commonly

used in literature, since these yield the potential for unique optical flow solutions for the

motion estimation problem. For a more general overview of regularization techniques

in optical flow estimation see [217]. In this context we are particularly interested in the

relationship between these smoothness assumptions and the resulting optical flow.
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L2 regularization

One of the first smoothness assumptions for optical flow has been proposed by Horn

and Schunck [99], and is based on the idea that adjacent pixels in an image share

similar optical flow vectors. This observation is quite reasonable, since pixels belonging

to the same semantic part of an image scene should move in the same direction with

almost equal velocity. Note that small changes are still possible due to projection.

Mathematically, this constraint can be realized by defining a regularization energy,

R(~u) = ||r~u||2L2 =

Z

⌦

n
X

i=1

|r~ui|2 d~x . (6.15)

Note that in this context r~u = (ru1, . . . ,run)T is the Jacobian matrix of ~u. By min-

imizing R, the magnitude of local gradients in the optical flow is reduced and hence a

smooth motion field is preferred. Using a regularization parameter ↵ within the varia-

tional formulation (6.1), the impact of this e↵ect can be controlled and thus the smooth-

ness of the optical flow can be regulated.

The L2 regularization has been used, e.g., in [13, 51, 99, 174]. Though it is easy to realize

this regularization numerically, the resulting optical flow is not discontinuity-preserving,

which is desirable in many applications.

L1 regularization

Since there is a need for edge-preserving optical flow solutions in certain applications,

di↵erent regularization energies have been proposed recently. L1 regularization, also

known as total variation (TV) regularization (cf. Section 4.3.4), became more and

more popular in the last decade, since novel minimization techniques from numerical

mathematics make it possible to realize this challenging term. The TV regularization is

given by the L1 norm of the gradient r~u, i.e.,

R(u, v) = |~u|BV = ||r~u||L1 =

Z

⌦

n
X

i=1

|r~ui|`p d~x , (6.16)

for which the inner norm |.|`p has to be chosen for 1  p < 1 according to the type

of total variation measure needed (cf. Section 4.3.4 for details). Analogously to the L2

regularization discussed above, it is possible to control the impact of TV by a regular-

ization parameter ↵. With increasing value of ↵ the level-of-details in the optical flow

gets reduced until for ↵ ! 1 the possible solutions for optical flow estimation converge

against the case of a globally constant motion field.
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Using total variation regularization leads to homogeneous motion vector fields within

a semantic part of a scenery and simultaneously preserves discontinuities at respec-

tive edges in the image. Hence, it replaces the global smoothness assumption of the

L2 regularization proposed by Horn and Schunck [99] by piecewise smoothness. This

characteristic is desirable in many cases, as one wants to avoid that motion fields are

transferred from a moving object to a stationary background.

However, due to the non-di↵erentiability of the TV norm, special numerical minimiza-

tion schemes have to be used in order to compute an optimal solution for optical flow (cf.

[30, 23]). Total variation regularization has been first proposed for denoising problems

by Rudin, Osher, and Fatemi [168], but soon was translated to optical flow methods,

e.g., see [20, 23, 216].

Approximated L1 regularization

Since minimization of energy functionals based on total variation (as discussed above)

is rather complicated, alternative approaches have been proposed. In order to preserve

discontinuities and simultaneously avoid the problem of di↵erentiability, non-quadratic

regularization terms can be used. The first possibility is to use the non-quadratic pe-

nalizer  introduced in Section 6.2.2 as proposed in [22, 52, 66, 217]. For regularization

purposes another simple family of functions has also been proposed, e.g., in [20],

�(d2) =
p

d2 + �2 , (6.17)

for which � > 0 is a fixed scaling factor normally chosen relatively small (⇠ 10�4)

and ensures the di↵erentiability of � in 0. As � ! 0 the sequence of functions �

converges against the absolute value |d|, which is the main motivation for using this

family of functions. Using the non-quadratic penalizer in (6.17) as regularization energy

for d2 = |r~u|2 =
n
P

i=1
|rui|2, we get,

R(u, v) = ||�(d2)||L1 =

Z

⌦

�(|r~u|2) d~x

=

Z

⌦

 

n
X

i=1

|rui|2 + �2

!

1
2

d~x .

(6.18)

The incorporation of the non-quadratic regularizer in (6.18) for motion estimation is also

called pseudo L1 minimization. The main reason for its popularity in the literature (cf.

[20, 49, 152, 169]) is its di↵erentiability (particularly in 0) and hence a less complicated

numerical realization compared to the TV regularization discussed above.



216 6 Motion analysis

6.2.5 Determining optical flow

After the discussion of common assumptions on optical flow, respective data fidelity

terms, and di↵erent regularization functionals in Sections 6.2.2 - 6.2.4, respectively, we

investigate classical approaches to determine optical flow.

We start with a short discussion of a prominent method by Lucas and Kanade [134],

since many methods use this as foundation for their approaches until today. Afterwards,

we investigate the popular variational method of Horn and Schunck [99] as representative

of a large class of variational methods for OF estimation. For the sake of clarity, we

restrict ourselves in both cases to two-dimensional data in Definition 6.1.1.

Lucas-Kanade method

For discussion of the Lucas-Kanade method, we switch from the environment of continu-

ous images and motion fields to a discrete setting for two-dimensional images. Using the

optical flow equation (6.4) as foundation, one has to solve an underdetermined system of

equations with two unknown variables for each pixel (x, y) 2 ⌦. The main idea of Lucas

and Kanade in [134] is to add local constraint for OF estimation and hence eliminate

the degrees-of-freedom. In conformance with the observation that image points share

similar motion vectors with their adjacent neighbors, the authors propose to assume

optical flow vectors to be equal in their local neighborhood Nr, with

Nr(~x) = { ~y 2 ⌦ | |~x � ~y|  r } .

Here, r 2 N>0 is the radius of the local neighborhood around a pixel ~x 2 ⌦. Typically,

a rectangular neighborhood of size (2r+ 1)⇥ (2r+ 1) pixels is used for images, i.e., the

inner norm |.| is chosen as maximum norm |.|1.

As the optical flow in Nr(~x) is assumed to be constant we get (2r + 1)2 equations for

two unknowns (uc, vc), i.e.,

0 = r~x I(x, y, t) · (uc, vc)
T +

@I

@t
(x, y, t), 8(x, y) 2 Nr(~x). (6.19)

The problem of an underdetermined equation system gets translated to an overdeter-

mined equation system of the form A (uc, vc)T = b, for which A 2 R(2r+1)⇥2 holds the

spatial derivatives and b 2 R2r+1 the temporal derivatives. Since we cannot expect from

(6.19) to have a solution (ûc, v̂c) for all equations, we have to change the paradigm.

Instead of computing an exact solution to all equations, one estimates a suitable approx-

imation by applying least-squares minimization.
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This can be realized by solving the so called normal equations,

ATA (uc, vc)
T = AT b . (6.20)

A solution (ûc, v̂c) to (6.19) is called least-squares solution and can be computed, e.g., by

inversion of the matrix ATA on the left side (cf. [74] for details). By simple calculations

and using the normal equations (6.20), we can explicitly give a solution for (6.19) as,

 

ûc

v̂c

!

=

0

B

@

P

(x,y)2⌦h

I2x(x, y)
P

(x,y)2⌦h

IxIy(x, y)

P

(x,y)2⌦h

IxIy(x, y)
P

(x,y)2⌦h

I2y (x, y)

1

C

A

�10

B

@

�
P

(x,y)2⌦h

IxIt(x, y)

�
P

(x,y)2⌦h

IyIt(x, y)

1

C

A

. (6.21)

Apparently, there exist pixels for which the matrix ATA on the right side is not invertible,

especially in homogeneous image regions where the gradient rI vanishes. Hence, the

aperture problem in Section 6.1.2 is not really solved, leading to sparse optical flow

fields in applications with flat image regions. Moreover, the size of the neighborhood

r has significant impact on the resulting motion field [134] and it is obviously the only

controllable parameter of (6.21).

This simple approach can be extended with a spatial weighting function !(x, y) to give

the central pixel more influence in the optical flow computation [134, 205]. Since the

Lucas-Kanade method is quite simple and its realization is easy to understand, it is very

popular for optical flow estimation and many variants based on this foundation have

been proposed for a variety of applications, e.g., [113, 121, 175, 176, 205].

Horn-Schunck method

As indicated above we are especially interested in variational methods for optical flow

estimation in this thesis and hence discuss one of the first approaches by Horn and

Schunck [99], which has been developed at the same time as the Lucas-Kanade method.

In contrast to the locality of the latter approach, the Horn-Schunck method determines

optical flow by minimization of a global optimization problem of the form (6.1). The

problem is formulated by using a L2 measure of the optical flow equation (cf. Section

6.2.3) as data fidelity term and a L2 regularization (cf. Section 6.2.4) as smoothness

constraint. Thus, one has to minimize the following variational energy functional,

EHS(u, v) =

Z

⌦

|rxI(x, y, t) · (u, v)T + It(x, y, t)|2 + ↵
�

|ru|2 + |rv|2
�

dx dy , (6.22)

where ↵ is a fixed regularization parameter controlling the smoothness of a possible

solution (û, v̂).
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The energy functional EHS in (6.22) is convex, since both the data fidelity term and

the regularization term are convex. Hence, one can obtain a global optimum of EHS by

solving the strong Euler-Lagrange equations (cf. Remark 2.3.16) for (6.22), i.e.,

0 = Ix(Ixu + Iyv + It) � ↵�u , (6.23a)

0 = Iy(Ixu + Iyv + It) � ↵�v , (6.23b)

with homogeneous Neumann boundary conditions. Hence, we have to solve a system of

two coupled partial di↵erential equations, which can be interpreted as steady-state of a

reaction-di↵usion process [133]. Since we propose an OF approach in Section 6.3 closely

related to the Horn-Schunck model, we discuss its numerical realization following [99].

In most applications the equations in (6.23) are discretized on ⌦ using finite di↵erences

and the approximation �u = u � u, for which u is a (weighted) average of the direct

neighborhood of u (see Section 6.3.4). This approximation of the Laplace-operator helps

to solve the problem with a semi-implicit approach, and leads for each pixel (x, y) 2 ⌦
to a linear equation system of the form,

 

I2x + ↵ IxIy

IyIx I2y + ↵

! 

u

v

!

=

 

↵ u� IxIt

↵ v � IyIt

!

. (6.24)

In order to compute (u, v) for all pixels (x, y) 2 ⌦h simultaneously, one could solve the

arising linear equation system with the help of exact standard algorithms, such as the

Gauss elimination scheme (cf. [74]). However, this approach is expensive in terms of

computational e↵ort and also tends to be susceptible to numerical errors.

Moreover, since the corresponding matrix for all pixels in (6.24) is sparse, it is feasible

to use an iterative solver, such as the Gauss-Seidel or Jacobi method (cf. [74]), and to

use the average values (u, v) from the previous iteration. Since the determinant of the

matrix is d = ↵(I2x + I2y + ↵) we can solve for u and v as,

(I2x + I2y + ↵)u = (↵ + I2y )u � IxIyv � IxIt , (6.25a)

(I2x + I2y + ↵)v = �IxIyu + (↵ + I2x)v � IyIt . (6.25b)

Subtracting du and dv from both sides of (6.25a) and (6.25b), respectively, leads to an

alternative form of the equations, which shows an interesting relationship to the optical

flow equation (6.4) (see [99] for an illustration of this geometrical property),

(I2x + I2y + ↵)(u� u) = �Ix(Ixu+ Iyv + It) . (6.26a)

(I2x + I2y + ↵)(v � v) = �Iy(Ixu+ Iyv + It) . (6.26b)
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By splitting the value of the optical flow vector (u, v) from its direct neighbors (u, v)

and using the updated uk+1 for the computation of vk+1, this approach can be seen as

semi-implicit approach and finally leads to an iterative computation scheme for (u, v)

given as,

uk+1 = uk � Ix(Ixu
k + Iyv

k + It) / (I
2
x + I2y + ↵) , (6.27a)

vk+1 = vk � Iy(Ixu
k+1 + Iyv

k + It) / (I
2
x + I2y + ↵) . (6.27b)

Note that the computation scheme in (6.27) is in principle the Jacobi method (cf. [74]),

except that in (6.27b) the updated flow ūk+1 is used. The Horn-Schunck method is

summarized in Algorithm 8. One possible initialization for (u0, v0) is a zero-vector flow

field and in general the iteration scheme in (6.27) updates (u, v) until convergence, i.e.,

the incremental changes of the optical flow fall below a predefined threshold ✏.

Finally, we state that the computation of the optical flow vector (u, v) in the next itera-

tion only depends on the values of the neighbors from the last iteration step. This can be

interpreted as an information wave propagating through the flow field. This propagation

leads for the Horn-Schunck algorithm to the fact that OF vectors are also estimated in

homogeneous regions in which the aperture problem holds, and hence produces a dense

motion field in contrast to the Lucas-Kanade method discussed above.

Algorithm 8 Horn-Schunck optical flow method

(u0, v0) = initializeMotionField();
repeat

uk+1 = updateFlowVectorU(I, uk, vk) (6.27a)
vk+1 = updateFlowVectorV(I, uk+1, vk) (6.27b)

until |(uk+1, vk+1)� (uk, vk)| < ✏

Current optical flow methods

In the literature there exist many extensions of the two traditional optical flow methods

discussed above. However, the major part of novel OF algorithms is based on vari-

ational methods, since these are well-understood in mathematics. Some of the most

sophisticated methods according to the Middlebury benchmark [10] are discussed in the

following. For a review of recent advances on optical flow algorithms in general see, e.g.,

[169, 188].

One particular approach gained popularity, because it combined the advantages of the

local and global optical flow methods of both Lucas-Kanade and Horn-Schunck in a

single framework as proposed by Bruhn et al. in [22].
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There are two algorithms which are based on histograms of oriented gradients. As

we discuss in Section 6.3.6, these appoaches are related to our proposed method to a

certain extend. Liu et al. propose in [129] the scale-invariant feature transform (SIFT)

flow algorithm, which uses a discrete, discontinuity preserving flow estimation based on

SIFT descriptors. Its main application is to match two images within a large image

collection consisting of a variety of scenes.

The large displacement (LD) optical flow proposed by Brox and Malik in [21] integrates

rich descriptors into a variational setting to tackle the problem of dense sampling-in-

time for small structures with high velocities, e.g., for detailed human body motion.

The authors investigate three di↵erent descriptors for matching, i.e., SIFT (as discussed

above), histogram of oriented gradients (HOG), and geometric blur.

The last algorithm to mention is the recently proposed motion detail preserving (MDP)

optical flow algorithm by Xu et al. in [221]. It is based on a sophisticated framework that

combines di↵erent approaches for high accuracy OF estimation. In a first step the flow is

initialized by matching SIFT features and filling gaps by comparing local pixel patches

(cf. the experiment in Section 6.3.1). This initialization is used for the minimization

of an energy functional based on an extended version of the Horn-Schunck model, i.e.,

using the gradient constancy constraint (cf. Section 6.2.2) as an additional data fidelity

term. In the last step the optical flow is improved by a refinement step using continuous

optimization and total variation regularization to preserve discontinuities.

6.3 Histogram-based optical flow for ultrasound imaging

Ultrasound images are perturbed by a variety of physical e↵ects, e.g., multiplicative

speckle noise, as analyzed in Section 3.3.1. In the following Section 6.3.1 we discuss

the problems of conventional optical flow methods using the ICC and its variants (cf.

Section 6.2.2) in the presence of these e↵ects. Motivated by these observations, fea-

tures which are more robust under speckle noise, i.e., local cumulative histograms, are

proposed. Subsequently, a novel data constraint based on histograms is introduced in

Section 6.3.3. This histogram constancy constraint is embedded into a variational op-

tical flow formulation and the corresponding numerical realization of this algorithm is

discussed in Section 6.3.4. Implementation details and di↵erent variants of the pro-

posed method are investigated in addition. Finally, we qualitatively and quantitatively

compare the proposed method to the classical Horn-Schunck method and state-of-the-

art approaches from the literature in Section 6.3.6. The following introduction of the

histogram-based optical flow algorithm is related to the work in [174, 198].
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6.3.1 Motivation and observations

One of the main assumptions of conventional optical flow algorithms is the absence of

noise in the given data as stated in Section 6.2.1. As this is not valid in real world appli-

cations, one uses proper regularization terms as discussed in Section 6.2.4. However, this

approach does not always give satisfying results in the presence of multiplicative speckle

noise, due to its signal-dependent nature, especially in image regions with high intensity

values. There are two di↵erent possibilities to tackle speckle noise by regularization:

• noise-compensation by over-regularization

• noise-compensation by adaptive regularization

The first approach determines a global regularization parameter large enough to enforce

the regularity of a possible solution and hence decrease the influence of noise. How-

ever, this leads to oversmoothing of the computed flow field, since meaningful image

features are ignored by over-regularization. Hence, there is always a natural trade-o↵

between noise reduction and loss-of-details. The second approach responds to the signal-

dependent nature of speckle noise by applying an adaptive regularization parameter and

thus regulating the influence of the regularization locally. This adaption to the image

content generally leads to a significant increase of computational e↵ort for OF estima-

tion as shown, e.g., in [215].

For the reasons discussed above, an alternative way to deal with multiplicative speckle

noise is preferable. Instead of tackling the impact of noise by regularization techniques,

we propose to handle image noise in terms of adequate data fidelity terms as discussed

in Section 6.2.2.

We will show that these constancy constraints are prone to get biased by strong noise,

as they are directly based on single intensity values. In particular, we will prove that the

signal-dependent level of speckle noise leads to false correlations between pixels in optical

flow estimation when using the intensity constancy constraint (cf. (6.3)) or one of its

variants. Modeling the signal intensities of image pixels as discrete random variables, this

e↵ect can be investigated by statistical analysis and also demonstrated experimentally.

Motivated by these observations we propose an alternative image feature for motion

estimation in Section 6.3.2, resulting in a more appropriate constancy constraint for

optical flow estimation on US data.

In the following we investigate the aforementioned bias analytically for the case of the L2

data fidelity term. This measure is particularly interesting, as it is used in the majority

of OF methods (cf. Section 6.2.2). Theorem 6.3.1 provides the mathematical evidence

for the inapplicability of the ICC in presence of multiplicative noise of the form in (3.8).
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Theorem 6.3.1 (Inapplicability of the ICC for US imaging). Let � 2 R�0 be an ar-

bitrary constant parameter. Let Xµ, Y ⌘ 2 Rn be random vectors with each component

Xµ
j , Y

⌘
j , j = 1, . . . , n, i.i.d. according to the noise model in (3.8), i.e.,

Xµ
j = µ + s� µ

�

2 and Y ⌘
j = ⌘ + s� ⌘

�

2 ,

with constant (unbiased) image intensities µ and ⌘, respectively. We define the energy,

E(µ, ⌘) = |Xµ � Y ⌘|2 . (6.28)

Then, the expected value of E attains its global minimum if, and only if,

µ =
�

2
⌘��1 + ⌘ . (6.29)

Proof. For the sake of notational simplicity, we assume that � = 1 in (3.8). This is

feasible, since the following argumentation holds up to a factor independent of µ and

⌘. It is easy to see that for the above requirements each random variable Xµ
j , Y

⌘
j is

normally distributed with mean µ, ⌘ and standard deviation µ
�

2 , ⌘
�

2 , respectively, i.e.,

Xµ
j ⇠ N (µ, µ�) , Y ⌘

j ⇠ N (⌘, ⌘�) . (6.30)

We examine the expected value of E in (6.28) with respect to the random vectorsXµ, Y ⌘.

Using the known identity

V[X] = E[X2] � (E[X])2 , (6.31)

and the linearity of the expected value we get,

E [E(µ, ⌘)] = E
⇥

|Xµ � Y ⌘|2
⇤

= E
"

n
X

j=1

�

Xµ
j � Y ⌘

j

�2

#

=
n
X

j=1

E[(Xµ
j )

2] � 2E[Xµ
j Y

⌘
j ] + E[(Y ⌘

j )
2]

i.i.d.
= n

�

E[(Xµ
j )

2] � 2E[Xµ
j ]E[Y

⌘
j ] + E[(Y ⌘

j )
2]
�

(6.31)
= n

⇣

V[Xµ
j ] +

�

E[Xµ
j ]
�2 � 2E[Xµ

j ]E[Y
⌘
j ] + V[Y ⌘

j ] +
�

E[Y ⌘
j ]
�2
⌘

(6.30)
= n

�

µ� + µ2 � 2µ⌘ + ⌘� + ⌘2
�

.

We investigate the situation in which we observe a vector of such random variables

and want to minimize the energy in (6.28) as this would be the case in optical flow
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estimation. Hence, we keep the parameter µ of Xµ fixed and look for a minimum of the

expected value of E depending on the free parameter ⌘ of Y ⌘, i.e., we are interested in

the constrained optimization problem (disregarding additive terms independent of ⌘),

argmin
⌘� 0

Eµ(⌘) = ⌘� + ⌘2 � 2µ⌘ . (6.32)

Due to the strict convexity of Eµ on R+, the existence of a unique minimum is guaran-

teed. Hence, it su�ces to examine the first order optimality condition dE
µ

d⌘ (⌘) = 0 for a

minimum of Eµ. Thus, by di↵erentiation we get the relationship,

�⌘��1 + 2⌘ � 2µ = 0 , (6.33)

which consequently leads to the assertion (6.29).

The direct implications of Theorem 6.3.1 lead to the fact that a least-squares estimator

is biased in the presence of multiplicative speckle noise of the form in (3.8). This result

follows directly from (6.29) and is emphasized in the following corollary,

Corollary 6.3.2. For two pixel patches Xµ, Y ⌘ of size n � 1 with the same constant

(unbiased) intensity values, i.e., ⌘ = µ, independently perturbed in each pixel by noise

according to (3.8), we can conclude the following:

i) The expected squared euclidean distance of Xµ and Y ⌘ is minimal if, and only if,

the data is perturbed by additive Gaussian noise, i.e., � = 0.

ii) For multiplicative speckle noise, i.e., � > 0, the expected squared euclidean distance

of Xµ and Y ⌘ is not optimal and hence these two pixel patches are not estimated

to be corresponding with respect to this distance measure.

Translating the results from Corollary 6.3.2 to our situation reveals that the ICC in

(6.3) as data constraint for optical flow can lead to a mismatch of image regions in the

presence of multiplicative speckle noise and therefore to errors in motion estimation.

This systematic error can be demonstrated easily by the following experiment.

Starting from two pixel patches of size 5⇥ 5 with constant intensity values µ = 150 and

⌘ 2 [0, 255], we add a realistic amount of speckle noise according to (3.8) and � = 1.5.

The resulting pixel patches, denoted by X150 and Y ⌘, are compared pixelwise with the

squared euclidean distance. For each integer ⌘ 2 [0, 255] we measure the distance of

these two random pixel patches and repeat this experiment 10, 000-times to fortify our

observations with su�cient statistics.
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⌘

kX150 � Y ⌘k2

2

Fig. 6.5. Average distance between two pixel patches biased by speckle noise. The

two dashed lines represent the standard deviation of the 10,000 experiments. The

global minimum of this graph is below the correct value of ⌘ = 150.

The resulting plot is visualized in Figure 6.5 and shows the average squared euclidean

distance of the two pixel patches and the standard deviation. Normally, one would expect

the minimum of the graph to be exactly at the value ⌘ = µ = 150, i.e., the distance of

both pixel patches is smallest if they are equally distributed. However, the minimum

of the graph is below this value. Indeed, putting µ = 150 in (6.29) results in ⌘ ⇡ 141,

which is exactly the minimum observed in Figure 6.5. To verify this observation, other

values of µ 2 [0, 255] were investigated and we observed that the minimum distance was

always found below the correct value. This e↵ect can be interpreted as consequence of

the signal-dependent nature of multiplicative speckle noise.

The above theory shows that using the ICC as data fidelity term for images biased by

speckle noise can lead to wrongly correlated image regions and therefore to erroneous

motion estimation in medical ultrasound data.

6.3.2 Histograms as discrete representations of local statistics

Based on the observation that the ICC is not applicable in the presence of speckle noise,

we state that there is a need for suitable data constraints in medical US imaging. The

main characteristic of multiplicative speckle noise is its dependency on the underlying tis-

sue, i.e., single speckles can alter between two images but the overall speckle distribution

within an image region remains approximately constant since the tissue characteristics

are in general locally homogeneous. Therefore, we suggest to consider a small neighbor-

hood around a pixel and compare the local statistics of the images by modeling signal

intensities of image pixels as discrete random variables as indicated in Section 6.3.1. A

signal distribution can be characterized by its specific cumulative distribution function.
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Definition 6.3.3 (Cumulative distribution function). For a given probability density

function f of a real valued random variable X the cumulative distribution function is

given by,

FX(x) =

x
Z

�1

f(t) dt , (6.34)

whereas the notation FX(x) = P(X  x) is also common. The formulation (6.34) can

be interpreted as the probability that X takes on a value less than or equal to x 2 R.

Assuming that pixels in a neighborhood are distributed independently, i.e., without spa-

tial correlation, and all significant characteristics of a signal distribution are captured in

this neighborhood, this approach is feasible independently of the assumed noise model.

Hence, we refrain to explicitly model the assumed probability density function f in (6.34)

by using one of the forms in Section 4.3.3, in order to keep this approach as general as

possible. This allows to use the proposed method also for other imaging modalities.

As a possible robust image feature, we propose to use local histograms as a discrete

representation of the intensity distribution within a small neighborhood. This feature

captures all important information of an image region, including noise statistics, and

thus can be used to relate corresponding pixels between di↵erent images.

In general cumulative histograms are preferable, since they are more robust than con-

ventional histograms under changes in illumination and noise [185]. Note that if the

cumulative histograms are normalized between 0 and 1 they directly correspond to cu-

mulative distribution functions in Definition 6.3.3. Indeed, local cumulative histograms

can be interpreted as empirical distribution functions, which are introduced in a discrete

setting as estimators for cumulative distribution functions [204].

Definition 6.3.4 (Cumulative histogram). For a real vector X = (x1, . . . , xn) the entry

for the i-th bin in the cumulative histogram H(X) 2 k of X with k bins is defined as

the ratio of random variables xj, j = 1, . . . , n, of X for which the condition xj   (i)

holds. Here, the map  : ! is a monotonic increasing step function which typically

partitions the codomain of the random variables xj in equidistant intervals. For the sake

of notational simplicity, we will identify the mapping in (6.35) with  (i) = i in the

following. The i-th bin of H(X) can be written with the help of indicator functions as

used in statistics,

H[i](X) =
n
X

j=1

[x
j

 i] !(xj) , (6.35)

where !(xj) is a spatial weighting function with
Pn

j=1 w(xj) = 1. Di↵erent weighting

functions are discussed in Section 6.3.5.
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Remark 6.3.5 (Regularity assumptions on histograms). In the context of continuous

images f : ⌦ ! R the question arises, how regular the local cumulative histogram H of

f is for a compact neighborhood ⌃ ⇢ ⌦. Indeed, the regularity of H depends directly on

the regularity of f , i.e., in a continuous setting we can reformulate H as,

H[i](⌃) =
1

|⌃|

Z

⌃

h(i � f(~x)) d~x , (6.36)

with h denoting the Heavyside function. If one translates the neighborhood ⌃ a rela-

tively short distance in ⌦, it gets clear, that the value of H[i](⌃) in (6.36) changes only

marginally, due to the strong overlap of regions.

For a proof of existence of minimizers in case of the proposed method in Section 6.3.4,

we add an artificial time variable t 2 R�0 to indicate di↵erent images in a sequence.

Further, we assume for the temporal derivative Ht[i] 2 L2(⌦) and for the (weak) spa-

tial derivative rxH[i] 2 Lp(⌦) for an appropriate p > 2 depending on the chosen H1

embedding and the dimension n (cf. [45, Theorem 1.2.4]).

In the case of an equal weighting function, i.e., w(xj) =
1
n , j = 1, . . . , n, the cumulative

histogram represents an empirical distribution function and can be interpreted as discrete

estimator of the cumulative distribution function. Since the xj, j = 1, . . . , n, are random

variables, the indicator functions [x
j

 i] can be modeled as Bernoulli random variables

with parameter pi, respectively. Hence, each entry H[i](X) represents an estimation for

a binomial random variable with parameter pi, i.e., H[i](X) ⇠ B(n, pi). For a given

random variable Y the following relation between indicator functions and cumulative

distribution functions in Definition 6.3.3 holds [204],

E
⇥

[Y  i]

⇤

= pi = P(Y  i) ,

V
⇥

[Y  i]

⇤

= pi(1� pi) = P(Y  i) (1� P(Y  i)) ,
(6.37)

The main advantage of local cumulative histograms is the fact that they are significantly

more robust under speckle noise since they include more statistics than single pixels while

not depending on the specific speckle pattern of a regular pixel patch.

Figure 6.6 shows di↵erent local cumulative histograms within a real 2D US B-mode

image using 12 bins to represent the grayscale distribution. The US image shows a

slice of a patient’s hypertrophic left ventricle in an apical four-chamber view. The three

example histograms represent di↵erent regions of the image: the high intensity values

of the septum (1), a mixed signal distribution in the lateral wall of the myocardium due

to shadowing e↵ects (2), and the non-reflecting blood within the cardiac lumen (3). As

one can see, the three cumulative histograms can clearly be separated, which enables us

to distinguish also pixels from the low contrast region (2) and the background (3).



6.3 Histogram-based optical flow for ultrasound imaging 227

1 2 3

Fig. 6.6. Di↵erent regions in an US image of the left ventricle and the corresponding

cumulative histograms of these regions.

6.3.3 Histogram constancy constraint

After discussion of the advantages of local cumulative histograms in Section 6.3.2, we

investigate their applicability for motion estimation using statistical analysis. First, we

replace the ICC from (6.3) by a histogram constancy constraint (HCC) given by,

H(x, y, t) = H(x+ u, y + v, t+ 1) , (6.38)

in which the function H represents the cumulative histogram of the respective region

around pixel (x, y) at time t as given in Definition 6.3.4. Hence, by using the HCC

we relate corresponding pixels by the estimated signal distribution within the local

neighborhood.

To measure the distance of two cumulative histogram vectors we propose to use a L2 data

fidelity term (cf. Section 6.2.3) to make it comparable to the situation in Section 6.3.1.

Furthermore, this is a baseline approach in most optical flow methods [10]. Analogously

to Theorem 6.3.1, we investigate the properties of the proposed HCC in (6.38) as data

constraint for motion estimation in combination with this data fidelity term in the

following theorem.

Theorem 6.3.6. Let � � 0 be an arbitrary constant parameter. Let Xµ, Y ⌘ 2 Rn be

random vectors with each component Xµ
j , Y

⌘
j , j = 1, . . . , n, i.i.d. according to the noise

model in (3.8), i.e., Xµ
j = µ+ s� · µ

�

2 and Y ⌘
j = ⌘+ s� · ⌘

�

2 with the constant (unbiased)

image intensities µ and ⌘, respectively. We define the energy,

Fn(µ, ⌘) = |H(Xµ)�H(Y ⌘)|2 . (6.39)

Then, there exists a global minimum of Fn and for n su�ciently large this minimum is

attained if, and only if, µ = ⌘.
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Proof. Without loss of generality, we use cumulative histograms with k bins as empirical

distribution functions, i.e., w(xj) = 1
n . This is feasible, since this theorem also holds

for non-trivial weighting functions. Furthermore, we assume that � = 1 in (3.8), for

the sake of simplicity, as in Theorem 6.3.1. According to the premises, each random

variable Xµ
j , Y

⌘
j is normally distributed with mean µ, ⌘ and standard deviation µ

�

2 , ⌘
�

2 ,

respectively, i.e., Xµ
j ⇠ N (µ, µ�) and Y ⌘

j ⇠ N (⌘, ⌘�). We examine the expected value

of Fn in (6.39) with respect to the random vectors Xµ, Y ⌘. Using that the Xµ
j , Y

⌘
j are

i.i.d., the linearity of the expectation value, and the identity (6.31) we get,

E [Fn(µ, ⌘)] = E
⇥

|H(Xµ) � H(Y ⌘)|2
⇤

=
k
X

i=1

E[ (H[i](Xµ))2 ] � 2E[H[i](Xµ)H[i](Y ⌘) ] + E[ (H[i](Y ⌘))2 ]

(6.31)
=
i.i.d.

k
X

i=1

V[H[i](Xµ)] + (E[H[i](Xµ) ])2 � 2E[H[i](Xµ) ]E[H[i](Y ⌘) ]

+V[H[i](Y ⌘)] + (E[H[i](Y ⌘) ])2

(6.35)
=

k
X

i=1

V
"

1

n

n
X

j=1
[Xµ

j

 i]

#

+

 

E
"

1

n

n
X

j=1
[Xµ

j

 i]

#!2

� 2E
"

1

n

n
X

j=1
[Xµ

j

 i]

#

E
"

1

n

n
X

j=1
[Y ⌘

j

 i]

#

+ V
"

1

n

n
X

j=1
[Y ⌘

j

 i]

#

+

 

E
"

1

n

n
X

j=1
[Y ⌘

j

 i]

#!2

i.i.d.
=

k
X

i=1

⇣

E
h

[Xµ

1  i]

i⌘2
� 2E

h

[Xµ

1  i]

i

E
h

[Y ⌘

1  i]

i

+
⇣

E
h

[Y ⌘

1  i]

i⌘2

+
1

n
V
h

[Xµ

1  i]

i

+
1

n
V
h

[Y ⌘

1  i]

i

(6.37)
=

k
X

i=1

P(Xµ
1  i)2 � 2P(Xµ

1  i)P(Y ⌘
1  i) + P(Y ⌘

1  i)2

+
1

n

�

P(Xµ
1  i) (1� P(Xµ

1  i)) + P(Y ⌘
1  i) (1� P(Y ⌘

1  i))
�

| {z }

=:r
n

(µ,⌘)

For n su�ciently large, i.e., n ! 1, the residual term rn vanishes and hence the expected

value of Fn converges against an energy F given by,

lim
n!1

Fn(µ, ⌘) = F (µ, ⌘) =
k
X

i=1

(P(Xµ
1  i) � P(Y ⌘

1  i))2 . (6.40)
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We investigate the situation in which we observe a vector of such random variables and

want to minimize the energy in (6.40). Hence, we keep the parameter µ of Xµ fixed and

look for a minimum of the expected value of F in dependency of the free parameter ⌘

of Y ⌘, i.e., we are interested in the constrained optimization problem

argmin
⌘� 0

Fµ(⌘) =
k
X

i=1

(P(Xµ
1  i) � P(Y ⌘

1  i))2 . (6.41)

Due to the strict convexity of Fµ on R, the existence of a unique minimum is guaranteed.

Apparently, the optimum of Fµ is zero and is attained if, and only if, each summand

in (6.41) is zero. Thus, the probability distribution functions of the random variables

Xj, Yj, j = 1, . . . , n, have to be equal. Consequently, this means µ = ⌘.

Corollary 6.3.7. The euclidean distance of two cumulative histograms for pixel patches

Xµ, Y ⌘ of size n (su�ciently large), which are perturbed by noise according to (3.8),

gets minimal independently of the noise characteristic �, if the unbiased intensity values

correspond to each other, i.e., µ = ⌘.

Remark 6.3.8. As discussed in the proof of Theorem 6.3.6 the residual term

rn(µ, ⌘) =
1

n

k
X

i=1

�

P(Xµ
1  i) (1� P(Xµ

1  i)) + P(Y ⌘
1  i) (1� P(Y ⌘

1  i))
�

(6.42)

vanishes for n ! 1. However, we are interested in the numerical error induced by this

approximation. First, we state that we can identify the cumulative distribution functions

in (6.42) with parameters pi, qi 2 [0, 1], 1  i  k, of Bernoulli variables and deduce the

following estimate,

rn(µ, ⌘)
(6.37)
=

1

n

k
X

i=1

�

pi(1� pi) + qi(1� pi)
�

 1

n

k
X

i=1

✓

1

4
+

1

4

◆

=
k

2n
.

We use the fact that the function f(x) := x(1 � x) is concave and attains it maximum

in x = 1
2 . Next, we can give a rough estimate for the convex energy in (6.40),

F (µ, ⌘) =
k
X

i=1

(P(Xµ
1  i) � P(Y ⌘

1  i))2 
k
X

i=1

1 = k .

Finally, we estimate the relative numerical error induced by a discrete approximation,

erel(n) :=

�

�

�

�

rn(µ, ⌘)

[Fn(µ, ⌘)]

�

�

�

�

=
rn(µ, ⌘)

F (µ, ⌘) + rn(µ, ⌘)


k
2n

k + k
2n

=
1

2n+ 1
. (6.43)
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⌘
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Fig. 6.7. Average distance between the histograms of two pixel patches biased

by speckle noise. Two dashed lines represent the standard deviation of 10,000

experiments. The minimum of this graph matches with the correct value of ⌘ = 150.

Note that the relative numerical error in (6.43) is of order 1 and hence vanishes linearly

with each additional pixel contributing to the local cumulative histogram. Although this

estimation is quite rough and can be seen as ’worst case’ approximation the influence of

rn can obviously be neglected, since the relative numerical error is low, e.g., for a 5⇥ 5

pixel neighborhood we get erel(n) < 2%.

Remark 6.3.9. Due to the results from Remark 6.3.8, it seems quite natural to choose

the size n of the local cumulative histogram H(X) relatively large in order to minimize the

influence of the residual term rn. However, since all spatial and structural information

of a local neighborhood X are neglected in H(X), one can observe a loss of locality with

increasing n. For this reason there is a trade-o↵ between the descriptiveness of a local

histogram in terms of locality and its robustness in the presence of multiplicative noise.

For the case of medical ultrasound images an optimal neighborhood size n with respect

to the latter two criteria is investigated in Section 6.3.5.

To illustrate the theoretical results presented in Theorem 6.3.6, the patch experiment

presented in Section 6.3.1 was repeated under the same conditions for the proposed

HCC. The results in Figure 6.7 show that the distance between the two pixel patches is

minimal, if both patches have the same constant intensity µ = ⌘ = 150 and share the

same local intensity distribution, before adding multiplicative speckle noise according to

(3.8). Thus, local cumulative histograms prove to be better suited for motion estimation

in the presence of speckle noise than single intensity values.

To conclude this section, we state that in contrast to the classical constancy constraints

discussed in Section 6.2.2, the HCC provides a less discriminative feature for optical flow

estimation (due to the loss of spatial information), but is significantly more robust in

the presence of a high level of noise.
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6.3.4 Histogram-based optical flow method

To explore the e↵ect of the new constancy constraint in (6.38) on optical flow estimation,

we propose a novel variational optical flow method in this section. For this reason we

formulate a variational optimization problem based on the proposed HCC from Section

6.3.3 incorporated into the L2 data fidelity term in (6.10), and combine it with the L2

regularization for optical flow in (6.15). This corresponds to an adaption of the basic

OF algorithm of Horn-Schunck (HS) in Section 6.2.5 for local cumulative histograms,

which is feasible since the properties of the HS algorithm are well-understood. After an

analysis of this variational problem and its potential solutions, we deduce a numerical

optimization scheme and propose the histogram-based optical flow (HOF) algorithm.

Variational problem

To determine the optical flow ~u : ⌦ ! n, we are especially interested in variational

problems of the form

inf
~u2X

D(~u) + ↵R(~u) , (6.44)

as already indicated in Section 6.1.2. Using the HCC in (6.38) and the results of Theorem

6.3.6, an obvious choice of the data fidelity term D in (6.44) is the L2 distance between

local cumulative histograms of two consecutive images. As regularization term R in

(6.44) the L2 regularization for optical flow from Section 6.2.4 o↵ers several advantages,

e.g., convexity and di↵erentiability. Furthermore, smoothness of the optical flow ~u is

a reasonable assumption for the presented application, because human tissue can be

deformed up to a certain degree, but is not able to change its topology.

For this setting an appropriate choice of the general Banach space X in (6.44) is the

Sobolev space H1(⌦; n) = W 1,2(⌦; n) (cf. Section 2.2.3), as we have to ensure that

all arising terms are well-defined and the minimization problem is well-posed. Hence,

for a histogram H with k bins, i.e., for H : ⌦ ⇥ �0 ! k, we formulate the following

variational problem,

inf
~u2H1(⌦; n)

Z

⌦

|H(~x+ ~u, t+ 1) � H(~x, t)|2 + ↵|r~u|2 d~x , (6.45)

where ↵ is the smoothness parameter determining the influence of the regularization

term and |r~u|2 is defined as in (6.15). Note that in this setting rui, i = 1, . . . , d, denote

the weak derivatives of ~u in the sense of Definition 2.2.17. Since the data fidelity term in

(6.45) is non-linear in ~u, we apply a linear approximation analogously to (6.4), i.e., the

componentwise first-order Taylor approximation of H[i] in (~x, t) for all bins 1  i  k.
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Thus, we can deduce,

H[i](~x+ ~u, t+ 1) � H[i](~u, t) ⇡ rxH[i](~x, t) · ~u + Ht[i](~x, t) , (6.46)

where Ht[i] denotes the temporal derivative of the i-th bin of H with respect to the

two given images at time points t and t + 1. Note that this approximation is only

valid in a small neighborhood around the point (~x, t) and thus only for small velocity

vectors ~u 2 n. For this reason we propose a multi-grid approach for local cumulative

histograms in Section 6.3.5.

The minimization problem in (6.45) with the approximated data fidelity term in (6.46)

reads as,

inf
~u2H1(⌦; n)

Z

⌦

|rxH(~x, t) · ~u + Ht(~x, t)|2 + ↵|r~u|2 d~x , (6.47)

for which the inner norm |·|2 of the approximated data fidelity term has to be understood

as dot product in k. To prove the existence of a solution of the minimization problem

(6.47), we show the analytic properties of the energy functional, namely strict convexity

and weak sequential compactness and apply the results of the direct method of calculus

of variations introduced in Section 2.3.

Lemma 6.3.10. Let ~x 2 Rn and A 2 Rk⇥n an injective matrix. Then there exists a

constant c 2 R>0 such that ||A~x||2 � c||~x||.

Proof. Since A is injective there exists a regular matrix ⌃ 2 Rn⇥n, a unitary matrix

U 2 Rk⇥n, and a unitary matrix V T 2 Rn⇥k such that,

A = U⌃V T ,

and all diagonal entries of ⌃ are positive, i.e., �ii > 0 for i = 1, . . . , n. Using this singular

value decomposition of A, we can deduce,

||A~x||2 = ||U⌃ V T~x
|{z}

=~y

||2 = ||U ||2
| {z }

=1

· ||⌃ ~y||2 � |min
i

�2
ii| · ||~y||2 = c ||V T ||2

| {z }

=1

· ||~x||2 = c||~x||2 .

Since A is injective, the constant c is positive.

Lemma 6.3.11 (Compactness of a minimizing sequence). Let H : ⌦ ⇥ R�0 ! Rk ful-

fill the assumptions in Remark 6.3.5 and let the partial derivatives
⇣

@H
@x1

, . . . , @H
@x

n

⌘

be

linearly independent almost everywhere on ⌦, i.e., rxH is injective. Then any mini-

mizing sequence of the energy functional E in (6.47) is compact with respect to the weak

convergence in H1(⌦).
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Proof. First we have to show that the functional E is proper, i.e., there exists some

~u 2 H1(⌦), such that E(~u) < +1. We use ~u ⌘ ~0 2 Rn canonically, and hence deduce

that,

E(~0) =

Z

⌦

|Ht|2 d~x = K < +1 . (6.48)

Now let (~un)n2N ⇢ H1(⌦) be a minimizing sequence, i.e.,

lim
n!1

F (~un) �! inf
~u2H1(⌦)

F (~u)
(6.48)
< +1 .

Further let M 2 R, such that F (~un)  M for all n 2 N. Then we can deduce the

following inequalities,

2M � 2

Z

⌦

|rxH~un + Ht|2 + ↵|r~un|2 d~x �
Z

⌦

|rxH~un|2 � 2|Ht|2
| {z }

C1

+ ↵|r~un|2 d~x

6.3.10
� C2

Z

⌦

|~un|2 + ↵|r~un|2 d~x � |⌦|C1 � min{C2,↵} ||~un||H1(⌦) � |⌦|C1 .

Using Remark 2.2.23, it follows directly that there exists a subsequence (~un
k

)k2N and

ū 2 H1(⌦), such that,

~un
k

* ū in H1(⌦) .

Lemma 6.3.12 (Weak lower semicontinuity). Let ⌦ ⇢ Rn be a open bounded subset

and let H : ⌦ ⇥ R�0 ! Rk fulfill the assumptions in Remark 6.3.5. Then the energy

functional E in is weakly lower semicontinuous on H1(⌦).

Proof. First, we show that f is aCarathéodory function according to Definition 2.3.1.

It is obvious that in the case of (6.47) the mapping (s, ⇠) 7! f(~x, s, ⇠) is continuous almost

everywhere on ⌦, since the squared norm on Rk and Rn is continuous. To show that the

mapping ~x 7! f(~x, s, ⇠) is measurable on ⌦, it su�ces to show that the Lebesgue integral

is finite, since the functions s 2 H1(⌦) and ⇠ 2 L2(⌦) are measurable per definition of

the L p function spaces (cf. Definition 2.2.6) and H is continuous on ⌦ by premise. By

using the Cauchy-Schwarz inequality (C.S.) we deduce,

E(s) =

Z

⌦

|rxH(~x, t) · s(~x) + Ht(~x, t)|2 + ↵ |⇠(~x)|2 d~x


Z

⌦

|rxH(~x, t) · s(~x)|2 + |Ht(~x, t)|2 + ↵ |⇠(~x)|2 d~x
C.S.


Z

⌦

|rxH(~x, t)|2 d~x ·
Z

⌦

|s(~x)|2d~x +

Z

⌦

|Ht(~x, t)|2 + ↵ |⇠(~x)|2 d~x .
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Since all integrands are in L2(⌦) by premise, we know E(s) < +1 and thus f is a

Carathéodory function. For a fixed (s, ⇠) we get the following growth condition,

0  f(~x, s, ⇠) = |rxH(~x, t) · s(~x) + Ht(~x, t)|2 + ↵ |⇠(~x)|2

 |rxH(~x, t) · s(~x)|2 + |Ht(~x, t)|2
| {z }

= b(~x)�0

+ ↵ |⇠(~x)|2

C.S.
 b(~x) + |rxH(~x, t)|2 · |s(~x)|2 + + ↵ |⇠(~x)|2

 b(~x) + C1 |s(~x)|2 + ↵ |⇠(~x)|2

 b(~x) + max(C1,↵)
�

|s(~x)|2 + |⇠(~x)|2
�

.

(6.49)

We finally show that the energy functional E is convex in ⇠. Let f be the integrand of the

energy functional E. In order to show that E is l.s.c with respect to the weak convergence

in H1(⌦) it su�ces to show that ⇠ 7! f(~x, ~u, ⇠) is convex for every (~x, ~u(~x)) 2 ⌦⇥Rn.

Since only the regularization term R of E in (6.47) depends on r~u, we can restrict the

following argument on this term without loss of generality.

Let ~u,~v 2 H1(⌦; n) with ~u 6⌘ ~v and let 0 < � < 1. Then we can deduce,

R(�~u + (1� �)~v) = ↵

Z

⌦

|�r~u + (1� �)r~v|2 d~x

2.3.10
< ↵

Z

⌦

�|r~u|2 + (1� �)|r~v|2 d~x = �R(~u) + (1� �)R(~v) .

Due to the fact that E is a convex functional and f is a Carathéodory function which

fulfills the growth condition (6.49), we can apply Theorem 2.3.17 and hence show that

E is weakly lower semicontinuous on H1(⌦;Rn).

Theorem 6.3.13 (Existence of a minimizer). Let ⌦ ⇢ Rn be an open bounded set and

let ↵ 2 >0 be fixed. Furthermore, let H : ⌦ ⇥ R ! Rk be a function which fulfills the

assumptions in Remark 6.3.5 and rxH is injective almost everywhere on ⌦. Then there

exists an unique minimizer û 2 H1(⌦; n) of the minimization problem (6.47).

Proof. This proof basically follows the fundamental theorem of Tonelli [45, Theorem

3.3], which guarantees the existence of a minimizer for a coercive and l.s.c. functional.

Letm = inf~v2H1(⌦) E(~v) and let (~un)n2N be a minimizing sequence such that F (~un) ! m.

Due to Lemma 6.3.11 there exists û 2 H1(⌦;Rn) and a subsequence (~un
k

)k2N ⇢ (~un)n2N
with ~un

k

* û in H1(⌦;Rn). Furthermore, E is lower semicontinuous with respect to the

weak convergence in H1(⌦;Rn), as proven in Lemma 6.3.12, and hence we can deduce,

E(û)
6.3.12
 lim inf

k!+1
E(~un

k

)
2.2.22
= lim

n!+1
E(~un) = inf

~v2H1(⌦)
E(~v) = m .
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Hence, we have shown that û 2 H1(⌦;Rn) is a minimizer of the energy functional E in

(6.47). The uniqueness of û follows directly from the strict convexity of the regularization

term R as proven in Lemma 6.3.12.

Remark 6.3.14 (Generalization of Theorem 6.3.13). In the proof of Theorem 6.3.13 we

used the strict convexity of the regularization term R in (6.15) to prove the weak lower

semicontinuity of E. In fact this step can be generalized to any convex regularization

functional incorporating a-priori knowledge in terms of r~u, e.g., the total variation

regularization in (6.16) as we discuss in Section 6.3.7.

Remark 6.3.15 (Regularity of the minimizer). Let û 2 H1(⌦; n) be the unique min-

imizer of (6.47) according to Theorem 6.3.13. Then û is at least twice continuously

di↵erentiable, i.e., û 2 C2(⌦; n).

This regularity result is a consequence of the observation that the Euler-Lagrange equa-

tions form a linear elliptic system of partial di↵erential equations (see (6.50) below).

General regularity results for quasilinear elliptic systems of partial di↵erential equations

(more general) can be found in [116, §4].

Numerical realization

For the computation of a minimizer of the variational problem in (6.47) we give the opti-

mality conditions and the numerical discretization of the respective di↵erential operators

in the following. Subsequently, we deduce a numerical iteration scheme to compute the

solution and formulate the final histogram-based optical flow algorithm.

Note that for the sake of clarity we restrict ourselves to the two-dimensional case, i.e.,

n = 2, ~x = (x, y), and ~u = (u, v). However, the results of this section can easily be

extended to a higher-dimensional case and results for three-dimensional data are also

shown in Section 6.3.6.

Using the regularity results for the solutions of the minimization problem (6.47) from

Remark 6.3.15, we can use the strong formulation of the Euler-Lagrange theorem (cf.

Remark 2.3.16) and thus get necessary and also su�cient conditions for the computation

of a minimizer of (6.47) due to the convexity of the variational problem. For a fixed

regularization parameter ↵ 2 >0 the Euler-Lagrange equations of the minimization

problem can be deduced analogously to the Horn-Schunck formulation in (6.23),

0 = Hx · (Hxu + Hyv + Ht) � ↵�u , (6.50a)

0 = Hy · (Hxu + Hyv + Ht) � ↵�v . (6.50b)
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Hence, we have to solve a parabolic system of two coupled partial di↵erential equa-

tions whose solution (û, v̂) 2 C2(⌦, 2) can be interpreted as steady-state solution of a

reaction-di↵usion process [133].

Analogously to Section 4.4.3, we discretize the parabolic system of Euler-Lagrange equa-

tions in (6.50) with the help of finite di↵erences on the image domain ⌦ and utilize the

fact in [99] that the Laplace operator can be approximated by

�u = u � u , �v = v � v ,

where u and v are the mean values of the four (2D), respectively six (3D), direct neigh-

bors. The derivatives Hx, Hy, and Ht of the histograms in (6.50) can be approximated

by the finite di↵erences,

Hx(x, y, t) = (H(x+ 1, y, t) � H(x� 1, y, t)) / 2

Hy(x, y, t) = (H(x, y + 1, t) � H(x, y � 1, t)) / 2

Ht(x, y, t) = H(x, y, t+ 1) � H(x, y, t) .

Using this discretization scheme, one gets for each pixel (x, y) 2 ⌦ a linear system of

equations,
 

|Hx|2 + ↵ Hx ·Hy

Hy ·Hx |Hy|2 + ↵

! 

u

v

!

=

 

↵ u � Hx ·Ht

↵ v � Hy ·Ht

!

, (6.51)

As in the case of the Horn-Schunck method, the corresponding matrix of the linear

system of equations for all pixels (x, y) 2 ⌦ is very large and sparse, due to the fact that

the reaction-di↵usion process described by (6.50) depends only on the flow vectors in a

very local neighborhood. Hence, we propose to use a semi-implicit solving scheme (cf.

[74]) to solve for (u, v) iteratively and use the average values (u, v) of the last iteration

step.

Since the determinant of the matrix in (6.51) is d = (|Hx|2 + ↵)(|Hy|2 + ↵)� (Hx ·Hy)
2

we can solve the linear equation system iteratively for uk+1 and vk+1 for all pixels simul-

taneously using a blockwise Gauss-Seidel approach given as,

uk+1 =
(|Hy|2 + ↵)(↵uk � Hx ·Ht) � Hx ·Hy(↵vk � Hy ·Ht)

(|Hx|2 + ↵)(|Hy|2 + ↵) � (Hx ·Hy)2
, (6.52a)

vk+1 =
(|Hx|2 + ↵)(↵vk � Hy ·Ht) � Hx ·Hy(↵uk � Hx ·Ht)

(|Hx|2 + ↵)(|Hy|2 + ↵) � (Hx ·Hy)2
, (6.52b)

The proposed histogram-based optical flow method is summarized in Algorithm 9. In

practice we perform the update of the optical flow vectors (u, v) until the incremental

changes fall below a user-specified threshold ✏ > 0.
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Algorithm 9 Proposed histogram-based optical flow method
(û, v̂) = initializeMotionField();
I⇤f = If
for lvl = maxScalingLevel ! 0 do

Hlvl = computeCumulativeHistograms(It, I⇤f , lvl) (6.35)
(u0, v0) = initializeMotionField(lvl);
repeat

uk+1 = updateFlowVectorU(Hlvl, uk, vk) [Equation 6.52a]
vk+1 = updateFlowVectorV(Hlvl, uk+1, vk) [Equation 6.52b]

until |(uk+1, vk+1)� (uk, vk)| < ✏
(û, v̂) = (û, v̂) + upscaleFlow(uk+1, vk+1)
I⇤f = warpImage(If , û, v̂)

end for

Furthermore, to cope with large velocity vectors between two given data sets we use an

adapted multigrid approach, which is discussed in detail in Section 6.3.5 below.

6.3.5 Implementation

After the introduction of the proposed variational optical flow model and the deduction of

a numerical realization to compute solutions to this model in Section 6.3.4, we investigate

di↵erent options to improve the accuracy and robustness of the histogram-based optical

flow (HOF) method in the following. For this we perform numerical experiments on

synthetic data generated with the three-dimensional software phantoms described in

Section 3.4. We implemented Algorithm 8 and Algorithm 9 in the numerical computing

environment MathWorks MATLAB (R2010a) on a 2⇥2.2GHz Intel Core Duo processor

with 2GB memory and a Microsoft Windows 7 (64bit) operating system.

Motion estimation accuracy of the HOF algorithm is measured by using the average

endpoint error (AEE) with respect to the ground truth vectors (û, v̂) proposed in [149],

AEE ((u, v), (û, v̂)) =
1

|⌦h|
X

~x2⌦h

p

(u(~x)� û(~x))2 + (v(~x)� v̂(~x))2 . (6.53)

The AEE measure quantifies the mean error in terms of the euclidean distance to the

ground truth vectors. Another possibility is to use the also popular average angular

error (AAE) (cf. [10]) with respect to the ground truth vectors (û, v̂), which is designed

to measure angle deviations by,

AAE ((u, v), (û, v̂)) =
1

|⌦h|
X

~x2⌦h

arccos

 

1 + u(~x) · û(~x) + v(~x) · v̂(~x)
p

1 + u(~x)2 + v(~x)2
p

1 + û(~x)2 + v̂(~x)2

!

.
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We prefer the AEE over the AAE, since it turns out that this measure is more descriptive

for the validation of optical flow algorithms [10], which is natural, as the AAE does not

consider di↵erences in vector length.

Within this section we discuss di↵erent choices of weighting functions and window sizes

for the local cumulative histograms and introduce a well-adapted multigrid approach

for the computation of local histograms without interpolation. Finally, we give typi-

cal parameter setting for the proposed HOF algorithm and analyze its computational

complexity.

Di↵erent weighting functions

The computation of the cumulative histogram vector H in Definition 6.3.4 can be real-

ized in various ways by applying di↵erent weighting functions on the signal intensities

within the local neighborhood. The particular selection of a weighting function ! for

the local histograms has to be considered carefully depending on the type of data, as

one has to deal with two opposing e↵ects.

Using an equal weight for all pixels in a local neighborhood contributing to the cu-

mulative histogram leads to a loss of locality and thus accuracy, since the information

inherent in the center pixel vanishes. Simultaneously, the robustness with respect to

outliers is significantly increased by this selection. On the other hand, one could think

of neglecting the influence of all pixels in the neighborhood, except the center pixel.

This extreme case turns out to be a realization of the Horn-Schunck method described

in Section 6.2.5, and thus shares the same problems as described in Section 6.3.1 due to

insu�cient statistics. Hence, it is important to balance both e↵ects in order to obtain a

reasonable trade-o↵ between locality and robust signal intensity statistics.

To investigate the e↵ect of di↵erent weighting functions we tested several candidates

on synthetic data, realized with the speckle software phantom described in Section 3.4.

Particularly, we compared an equal -weighted function, a Gaussian function, two linearly

decreasing functions (cone- and pyramidal -formed), and a hyperbolically decreasing func-

tion. An illustration of these weighting functions can be seen in Figure 6.8. Note that

the peak of the hyperbola in Figure 6.8d is cut o↵ due to scalability reasons.

The results of this experiment are computed for a 9 ⇥ 9 ⇥ 9 neighborhood and the ac-

curacy of the motion estimation measured in AEE according to (6.53) can be seen in

Table 6.1. They show that both a Gaussian as well as a cone-formed function deliver

the best results. A pyramidal-formed weighting function is inferior to the latter ones,

probably due to the lack of radial symmetry. Using an equal-weight function leads to a

loss of locality as discussed above.
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(a) Equal (b) Gaussian

(c) Cone (d) Hyperbola

Fig. 6.8. Visualization of di↵erent ex-

perimental weighting functions ! for

local cumulative histograms.

Weighting function AEE

Equal-weight 0.117± 0.038

Gaussian 0.081± 0.027

Cone 0.069± 0.015

Pyramid 0.105± 0.030

Hyperbola 0.243± 0.191

Table 6.1. Comparison of the perfor-

mance of the HOF-algorithm with respect

to di↵erent weighting functions.

This is due to the fact that all image intensities in the neighborhood, including pixels

far away from the center pixel, contribute equally to the local histogram. The worst

results was found for the hyperbolically decreasing function, since the strong influence

of the central pixel gets biased easily biased by speckle noise and hence is close to the

case of the ICC.

Window size of local histograms

To investigate the impact of the window size for the local cumulative histograms on the

accuracy of optical flow estimation, we performed experiments on synthetic data using

the cone-shaped weighting function, which performed best in the evaluation discussed

above. Again, one can expect two opposing e↵ects when altering the window size of the

histogram. For increasing neighborhood size one gets more statistics from this region

and can expect a higher robustness under the impact of multiplicative speckle noise.

Simultaneously, one loses locality of the computed features and thus accuracy of the

motion estimation algorithm. On the other hand, with a decrease of window size the

proposed method converges to a case similar to the intensity constancy constraint, with

too little local statistics for a robust motion estimation in the presence of speckle noise.

In Table 6.2 the optical flow estimation results measured in AEE according to (6.53) for

window sizes between 33 and 193 voxels are listed. As one can clearly see, the best choice

for the window size is a 9 ⇥ 9 ⇥ 9 neighborhood. This observation can be interpreted

as the optimal trade-o↵ between the two opposing e↵ects discussed above. The optimal

window size has to contain enough statistics to cope with speckle noise, as well as smooth

the images just enough to conserve important structure details in the given images.
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Window size AEE

3⇥ 3⇥ 3 0.442± 0.719

5⇥ 5⇥ 5 0.231± 0.219

7⇥ 7⇥ 7 0.123± 0.052

9⇥ 9⇥ 9 0.069± 0.015

11⇥ 11⇥ 11 0.091± 0.022

13⇥ 13⇥ 13 0.131± 0.060

15⇥ 15⇥ 15 0.201± 0.142

17⇥ 17⇥ 17 0.278± 0.255

19⇥ 19⇥ 19 0.322± 0.413

Table 6.2. Comparison of the performance of the HOF-algorithm with respect to

the window size.

Multigrid approach for local histograms

Due to the Taylor approximation of the constancy constraints (cf. Section 6.2.2 and

6.3.4), optical flow estimation can only be performed well for relatively small motion

vectors. For the algorithm of Horn-Schunck this is fulfilled for vectors of less than one

pixel length. For the approximation of the HCC in (6.38) the limitations in the length of

motion vectors are less severe, since the local regions, which are needed for computation

of the histograms, are strongly overlapping. Our experimental observations indicated

that consistent flow vector fields with a length of up to three pixels can be computed.

For larger displacements between two data sets the local linearization by the Taylor

approximation gets untenable and thus leads to erroneous motion estimation results. In

this case a standard approach is to use multigrid techniques. For a detailed introduction

to this topic we refer, e.g., to [199]. The general idea of this approach is to scale down

the data to a size in which the velocity vectors have a smaller length than approximately

one pixel. Once the displacement is estimated, the resulting vectors are used to warp

one image and hence reduce the motion that is left on the original scale. An accurate

warping method for images using optical flow vectors is given in [152].

To cope with large movements, we propose an adapted multigrid approach especially for

the computation of features based on local histograms. We intentionally do not use the

standard approach of scaling down the original images, since this leads to mixed intensity

values due to interpolation and therefore to degenerated local intensity distributions.

Instead, we want to keep the given data in the original scale and modify the way of

computing the local cumulative histograms.
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(a) Original data with level 0

of the proposed multigrid ap-

proach

(b) Rescaled data with level

1 of the proposed multigrid

approach

(c) Original data with level 1

of the proposed multigrid ap-

proach

Fig. 6.9. Illustration of two levels of the proposed multigrid approach. Rescaling

the data in (b) induces degenerated statistics for the local cumulative histograms

due to interpolation in contrast to using the original data in (c) with larger neigh-

borhoods.

In Figure 6.9 we illustrate the proposed multigrid scheme for local histograms. In this

context the circles represent the e↵ective neighborhood for the local cumulative his-

tograms using the cone-shaped weighting function discussed above. The centers of this

neighborhoods are indicated by the black dots. Figure 6.9a shows the initial situation

for a toy example of size 3 ⇥ 3 pixels on level 0 of our multigrid approach. Standard

multigrid approaches in the literature downscale this initial data using interpolation

techniques and hence result in a level 1 scaling grid with less data as shown in Figure

6.9b. This inevitably leads to a loss of statistics in the estimated local histogram, which

we want to avoid by our approach. For this reason we calculate the histograms directly

on the original data without downscaling, as opposed to the standard method discussed

above.

Our idea is to depart the local histogram centers from each other and enlarge the win-

dow size by the appropriate scaling factor. Interpolation thus only occurs at the border

pixels of the neighborhood. Using a reasonable weighting function for the computation

of the local cumulative histogram (cf. discussion above) makes the contribution of these

interpolated pixel values negligible. This procedure leads to level 1 of the proposed

multigrid approach, which is based on the original data without downscaling as illus-

trated in Figure 6.9c.

In summary, we state that by using this method one is capable of performing motion

estimation with the proposed histogram-based optical flow algorithm for velocity vec-

tors exceeding a length of one pixel, while using the original statistics of the data, thus

avoiding estimation errors induced by data interpolation.
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Parameter choice

To summarize the observations made in the experiments described above, for a good

compromise between robustness and locality, one has to use relatively large windows for

the local cumulative histograms, while simultaneously giving the central pixels a higher

influence on the histogram by appropriate weighting. For synthetic data generated by

the speckle software phantom in Section 3.4 it was found optimal to use a Gaussian- or

cone-shaped weighting function in combination with a window size of 9⇥ 9 pixels (2D),

respectively 9⇥ 9⇥ 9 voxels (3D). This coincides with our experiences with real patient

data described in Section 6.3.6.

Approximating the intensity distribution using only ten bins for the local cumulative

histogram in (6.35) has already returned reasonable results, which further improved

with increasing bin count. For more than 30 bins no more significant improvement was

observed, and thus we use 30 bins to discretize the local intensity distribution.

Since the L2 distance of two local cumulative histogram vectors is much smaller than

the distance of image intensity vectors in the Horn-Schunck algorithm the smoothness

parameter ↵ has to be chosen accordingly smaller. For real patient ultrasound data

empirical tests on 15 data sets showed optimal values for ↵ in the domain ↵ 2 [0.5, 1.5],

in contrast to ↵ 2 [200, 500] for HS. This specification is bound to the chosen parameters

stated above, i.e., number of bins, window size, and weighting function.

Computational complexity

The computational complexity of the Algorithm 9 (HOF) is comparable to the multigrid

implementation of Algorithm 8 (HS), since most necessary computations, e.g., scalar

products of local cumulative histograms in (6.52), can be computed in a preprocessing

step and thus can be reused in every iteration step.

The overall complexity of HOF for the 2D case is given by O((n2+b+ i)m), whereas the

classical HS needs O(im). Here m is the image size, n2 is the window size of the local

histograms, b is the number of bins, and i the number of iterations needed to calculate

the resulting flow field. For real ultrasound data and the optimal parameter settings we

observe an increase in runtime of factor ⇠ 1.5 compared to HS.

For two real ultrasound images of size 250 ⇥ 350 motion estimation using the HOF

algorithm takes approximately 1.5 times longer than the HS algorithm. Over a test

series with ten pairs of US B-mode images from echocardiography we measured an

average runtime of 60 seconds for the HOF algorithm compared to 45 seconds for the

HS algorithm.
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6.3.6 Results

The Horn-Schunck method (Algorithm 8) and the proposed histogram-based optical flow

method (Algorithm 9) were implemented for both 2D ultrasound B-mode images and

also for 3D data from modern ultrasound systems.

It is reasonable to compare these two methods with each other, since the HS algorithm

is the foundation for the proposed HOF algorithm. Both algorithms were validated and

compared to three recent methods from the literature (for which the code is available)

discussed in Section 6.2.5 on synthetic data with ground truth vectors, as well as real

patient data from echocardiographic examinations. In particular we used the implemen-

tations of the large displacement (LD) optical flow algorithm of Brox et al. [21], the

SIFT optical flow algorithm of Liu et al. [129], and the motion detail preserving (MDP)

optical flow algorithm of Xu et al. [221]. The latter one is currently rated as one of

the best performing optical flow algorithms with respect to motion estimation accuracy

according to the Middlebury benchmark of Baker et al. [10]. All three algorithms are

closely related to the proposed HOF algorithm, since they are based on histogram of

oriented gradients features.

2D synthetic data

To quantitatively evaluate the discussed methods above, we used the two-dimensional

speckle noise software phantom from Section 3.4. We generated realistic optical flow

vectors for the anatomical structures of the heart in the software phantom as ground

truth under advisory of echocardiographic experts to simulate motion of the diastolic

phase, i.e., relaxation of the left ventricle. These optical flow vectors were additionally

smoothened by applying an appropriate Gaussian filter to realize elastic deformations of

the tissue. Finally, the generated vectors were used to warp the unperturbed geometry of

the heart in the target image and thus generate a floating image for motion estimation.

The results of the algorithms discussed above were compared to the ground truth vectors

by using the average endpoint error (AEE) from (6.53). We tested six di↵erent noise

levels, i.e., �2 2 {0.125, 0.250, . . . , 0.750}, and on each level we generated ten di↵erent

instances of random perturbation with multiplicative speckle noise. We optimized the

parameters of the five algorithms for each noise level with respect to the mean AEE and

performed 300 tests for our evaluation in total. We state that the deviation from the

average motion estimation performance within ten corresponding data sets of same noise

variance was very low (⇠ 2%), which indicates that our observations are reproducible

and independent of the used random seeds.
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(a) Ground truth flow (b) LD flow (c) SIFT flow

(d) MDP flow (e) HS flow (f) HOF flow

Fig. 6.10. Synthetic data simulating an apical four-chamber view of the human

heart. (a) Unperturbed image of the geometry of a human heart with ground truth

flow vectors. (b)-(f) Results of the large displacement (LD) optical flow, the SIFT

flow algorithm, the motion detail preserving (MDP) optical flow algorithm, and

the Horn-Schunck (HS) optical flow, compared to the proposed histogram-based

optical flow algorithm (HOF), respectively. The computed optical flow vectors are

indicated as white arrows as an overlay on the perturbed floating image.
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Figure 6.10 shows the corresponding flow fields on the most realistic noise level of � = 0.5

according to echocardiographic experts. We have to remark that our software phantom

has a lack of small anatomical image details and thus a large smoothness parameter ↵

for HS is able to compensate for the high amount of speckle noise. Experiments on real

data discussed below show even more significant di↵erences between the HS and HOF

algorithms, since real data yields more small anatomical image details.

Table 6.3 shows the numerical results of the experimental setup discussed above. As

can be seen, the proposed data constraint, i.e., the HCC in (6.38), improves the motion

estimation significantly, compared to the original formulation of Horn-Schunck. Al-

though the absolute di↵erence of motion estimation accuracy does not seem to be large,

a quantitative improvement of 20% has been reached just by the incorporation of a more

suitable data model into the algorithm of HS. Note that the standard deviation of the

AEE is also reduced by the proposed approach.

For the three recent algorithms from the literature based on histogram of gradient fea-

tures we observed a significantly higher AEE during our experiments. This observation

can be interpreted by discussing two di↵erent problems.

First, all three algorithms expect discontinuities within the estimated flow vectors and

thus are not suited for the smooth ground truth data generated in this scenario. Since

they are designed for motion estimation in natural images from photography, they use

a L1 or approximated L1 regularization term (see Section 6.2.4). However, such discon-

tinuities are not typical in biomedical applications, e.g., medical imaging.

Second, all three algorithms have problems in the presence of speckle noise, as these ran-

dom inhomogeneities are interpreted as rich image features which have to be matched

accurately. With increasing parameter �2 the motion estimation accuracy of all three

algorithms from the literature increases until a certain level of noise is reached, which

fortifies this argument. This e↵ect can also be seen in Figure 6.10b for the case of the

LD flow, which produces strongly mismatched correspondences especially in the region

of the septal wall of the left ventricle. For this reason these methods were outperformed

by the proposed HOF algorithm and even by the traditional formulation of HS, which

is based on image intensities only.

The MDP algorithm showed the best results compared to the LD and SIFT flow algo-

rithms and thus confirms the trend of the Middlebury benchmark [10]. However, we have

to acknowledge that the SIFT flow algorithm does not achieve flow fields at subpixel

accuracy, due to its design and thus is restricted to full integer flow vectors, as can be

seen in Figure 6.10c.
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Noise LD flow SIFT flow MDP flow HS flow HOF flow

level Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

�2 AEE AEE AEE AEE AEE AEE AEE AEE AEE AEE

0.125 1.166 2.393 0.924 0.836 0.834 0.782 0.287 0.320 0.230 0.264

0.250 1.161 3.146 0.845 0.746 0.594 0.533 0.318 0.337 0.255 0.281

0.375 1.059 2.742 0.799 0.714 0.592 0.519 0.354 0.375 0.291 0.314

0.500 1.104 2.959 0.786 0.707 0.609 0.515 0.381 0.406 0.313 0.319

0.625 1.304 3.579 0.780 0.702 0.626 0.514 0.400 0.411 0.350 0.373

0.750 1.340 3.393 0.789 0.717 0.662 0.535 0.446 0.489 0.379 0.368

Table 6.3. Performance comparison of the proposed HOF algorithm to the LD

optical flow algorithm, the SIFT optical flow algorithm, the MDP optical flow algo-

rithm, and the HS method on synthetic data generated by a 2D software phantom

using the average endpoint error (AEE). The table shows the average values of ten

datasets created with di↵erent random instances of synthetic speckle noise.

3D synthetic data

We compared the proposed histogram based optical flow algorithm to the classical Horn-

Schunck algorithm on three-dimensional synthetic data simulating two volumes of the

human heart acquired during diastolic phase, i.e., during relaxation of the left ventri-

cle. The data is generated by the three-dimensional extension of the software phantom

discussed in Section 3.4. Since the available code for the additional three algorithms dis-

cussed above is only realized for two-dimensional images, we were not able to evaluate

them in this comparison. However, due to the larger amount of voxels in this experi-

mental setup compared to the simple 2D software phantom used above, we evaluated

di↵erent parameters of the proposed HOF algorithm, e.g., di↵erent weighting functions

and window sizes as described in Section 6.3.5.

Using the ground truth vectors of the anatomical speckle noise phantom and the average

endpoint error (AEE) from (6.53), we measure the motion estimation accuracy of the

proposed HOF algorithm and the HS algorithm on three-dimensional data using both

a multigrid approach, as well as only motion estimation on the highest resolution level.

As can be seen in Table 6.4, our observations from the 2D software phantom above also

hold for the three-dimensional case. After optimizing the parameter settings for both

algorithms, we observed a gain of 68, 8% in accuracy of the optical flow computation

with respect to the AEE. Again, the standard deviation has been decreased drastically.

The proposed HOF algorithm achieves a higher motion estimation accuracy without

using a multigrid approach, then the traditional HS algorithm with multigrid approach.

This is due to the fact, that the violation of the assumption of small velocity vectors

is less severe for the HOF algorithm, since the used local cumulative histograms have a

large overlap and cover a greater distance as discussed in Section 6.3.5.
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Sequence HOF HS

OF with multigrid 0.069± 0.015 0.221± 0.189

OF without multigrid 0.214± 0.161 0.283± 0.380

Table 6.4. Comparison of the performance of the HOF algorithm to the method

of HS on an anatomical 3D software phantom using the average endpoint error.

The improvement between the traditional algorithm of Horn-Schunck and our proposed

method becomes even more evident in this setting, since the geometry from the XCAT

phantom includes much more anatomical details as the two-dimensional software phan-

tom in Figure 6.10. Note that the absolute error of both algorithms is less compared

to the 2D case from last section, since the number of zero velocity vectors in the three-

dimensional data set increased over-proportionally to the region-of-interest.

2D ultrasound B-mode images

To validate our approach on real medical data, we applied the five algorithms discussed

above on ten pairs of consecutive 2D US B-mode images of the left ventricle acquired

with a X51 transducer on a Philips iE33 ultrasound system (⇠ 150µm⇥350µm resolution

@2.5MHz).

In Figure 6.11a and 6.11b one can see two consecutive images (target and floating im-

age) from real patient data of the left ventricle in an apical four-chamber view. These

frames have been extracted from the phase of cardiac systole, i.e., contraction of the left

ventricle. In this experimental setup, deformation grids were used to visualize the esti-

mated motion vectors, since it was found easier to interpret the grid deformation than

the optical flow vector visualization in Figure 6.10. Since there is no ground truth for

real patient data, we let echocardiographic experts rate the quality of these estimations

to find the best parameter settings for each algorithm.

Figure 6.11e shows a result of the Horn-Schunck algorithm with the regularization pa-

rameter ↵ = 250. The visualized grid reveals several inconsistencies and anatomically

incorrect deformations although a relatively high regularization was chosen, especially

near the base of the left ventricle (lower left part). One possible reason for this is that

the HS algorithm is based on the intensity constancy constraint, which is not valid in

the presence of speckle noise as discussed in Section 6.3.1. Figure 6.11f demonstrates

the result of the proposed histogram based optical flow algorithm for ↵ = 1. One can

clearly see that the histogram constancy constraint leads to satisfying results on noisy

US images although using a relatively low regularization parameter.
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Figures 6.11c and 6.11d show the results from the LD and SIFT algorithms. As can be

seen, both algorithms estimate significantly less motion on the whole image than the HS

and HOF algorithms, probably due to the most prominent edges of the ultrasound cone,

which are interpreted as rich features. At this point we refrain to show an image of the

MDP algorithm, due to the fact that we were not able to obtain a satisfying motion field

for all tested parameter settings.

Our observations on the other nine pairs of consecutive images were similar to the dis-

cussed results above. The MDP algorithm failed to produce satisfying motion estimation

results. For the two other histogram of gradient feature-based algorithms the motion

detected by the SIFT flow method was rated as being more accurate, although the vec-

tors are restricted to integer values and therefore the flow field does not appear very

smooth. Note that motion estimation in 2D US B-mode images still is prone to e↵ects

that induce erroneous flow fields, since anatomical structures move into the image from

outside the imaging plane during the myocardial cycle.

3D echocardiographic data

Finally, we also tested the feasibility of the proposed histogram based optical flow al-

gorithm on real 3D patient data from an echocardiographic TTE examination of the

left ventricle captured with a X51 transducer on a Philips iE33 ultrasound system

(⇠ 150µm2 ⇥ 350µm resolution @2.5MHz) during the diastolic phase, i.e., relaxation

of the left ventricle. Figure 6.12 illustrates the results of motion estimation in three or-

thogonal slices of the data set with the corresponding motion vectors in sagittal, coronal,

and transversal planes. Since the full motion of the left ventricle can be captured in the

volume dataset, less problems occur in the estimation of the flow fields. Therefore we

chose the regularization parameter ↵ = 0.6 and observed satisfying results which gave

anatomically consistent flow fields in all three dimensions.

Our observations suggest that our method can be used for functional imaging with 3D

ultrasound data, which is a new and fast developing field in clinical environment.

6.3.7 Discussion

We investigated the impact of multiplicative speckle noise on optical flow estimation and

proved the inapplicability of the traditional intensity constancy constraint for ultrasound

imaging. To overcome the limitations of this widely used data constraint, we proposed

a new model for optical flow methods for US data based on local cumulative histograms

and proved its superiority.
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(a) Floating frame (b) Target frame (c) LD result

(d) SIFT result (e) HS result (f) HOF result

Fig. 6.11. (a)-(b) Floating and target frame of US B-mode images of the left

ventricle. (c)-(f) Deformation grid of the large displacement (LD) optical flow, the

SIFT flow algorithm, and Horn-Schunck (HS) optical flow compared to the proposed

histogram-based optical flow (HOF) algorithm, respectively.

Our algorithm has shown to be more robust in the presence of speckle noise compared

to the conventional method of Horn-Schunck, which was chosen as representative of a

class of algorithms based on the ICC and its relatives. We compared the performance

of three recent algorithms from the literature based on histogram of oriented gradients

features to our method on both synthetic and real patient 2D data. We observed similar

problems in the presence of multiplicative speckle noise for these algorithms as they use

local gradient information, which are known to be sensitive to noise.
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(a) transversal view (b) sagittal view (c) coronal view

Fig. 6.12. Transversal, sagittal, and coronal slices of an 3D US TTE examination.

The vectors indicate the result of motion estimation with HOF.

Furthermore, the MDP algorithm had severe problems, when applied on real ultrasound

data. One possible reason is the fact that the algorithm compares local neighborhoods

using the L2 distance in one step of the processing pipeline. As we proved in Theorem

6.3.1, this leads to false minima during optimization, due to the multiplicative noise

characteristics.

Finally, we conclude that it is worth designing new motion estimation models for medical

ultrasound imaging, as this can lead to significant improvements. Furthermore, our

investigations showed that there is a strong need for novel data constraints in the field

of image processing for US data.

In future work we plan to test the proposed optical flow algorithm on natural images from

photography and video sequences. The question if the proposed histogram constancy

constraint gives good results on images without perturbations by multiplicative speckle

noise suggests itself in this context. Since the results from Theorem 6.3.6 hold also

true for the special case of additive Gaussian noise, i.e., � = 0 in (3.8), one can expect

satisfying motion estimation performance. We performed first tests to evaluate the

potential of the proposed model and observed accurate motion estimation results even

for a high level of additive Gaussian noise. However, quantitative measurements still

have to be performed to fortify this observation.

A possible extension of the proposed model in (6.47) is to incorporate a L1 regularization

term, as discussed in Section 6.2.4. This adaption makes sense for applications outside

of medical imaging where projections of objects induce discontinuities in the optical flow

vector field.
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An adapted variational model for motion estimation based on the histogram constancy

constraint is given by,

inf
~u2H1(⌦; n)

Z

⌦

|rxH(~x, t) · ~u + Ht(~x, t)|2 d~x + ↵

Z

⌦

n
X

i=1

|r~ui|`p d~x , (6.54)

in which the inner norm |.|`p has to be chosen for 1  p < 1 according to the type of

total variation measure needed (cf. Section 4.3.4 for details).

We already implemented this model using the alternating direction of multipliers method

(ADMM) from Section 4.3.5, similar to the realization of the proposed Optical Flow-TV

algorithm of Brune in [23, §8.5]. One has to take special care when minimizing the total

variation regularization term in the vectorial case, i.e., i > 1.

A fast dual minimization algorithm for the vectorial total variation norm can be found,

e.g., in [17], and was applied for the numerical realization of (6.54). In future work we

plan to further evaluate the proposed model in (6.54).
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7
Conclusion

Computer-assisted processing and analysis of biomedical imaging data contributes signif-

icantly to the progress in modern life sciences. Technological breakthroughs in computer

vision and life sciences gives new impetus to frontier research in the respective other field.

Within this thesis we elaborated variational methods for typical computer vision tasks

in medical ultrasound imaging and focused on appropriate data modeling in the presence

of non-Gaussian noise. In particular, we developed novel methods for segmentation and

motion analysis. Numerical experiments on synthetic as well as real patient data indicate

that these methods are superior to established approaches known from the literature.

We proposed a variational region-based segmentation framework which is able to incorpo-

rate information about the image formation process by means of physical noise modeling.

Due to its modularity and flexibility, a large amount of segmentation problems can be

investigated and realized by this method. Based on this framework, we were able to

show that the popular Rayleigh noise model is not the best choice for log-compressed

ultrasound images, which are common for modern medical ultrasound imaging systems.

Our results suggest that the Loupas noise model, which has been used only for denoising

tasks in the literature so far, is a more appropriate choice for this data. The assumption

of additive Gaussian noise, commonly used in most computer vision applications, leads

to unsatisfying segmentation results.

Extending the proposed segmentation framework by a shape prior based on Legendre

moments, we could confirm these observations in the case of high-level segmentation.

In case of the L2 data fidelity term, induced by the assumption of additive Gaussian

noise, we were not able to obtain satisfying segmentation results during the evaluation

on real patient data. In contrast to that, the incorporation of the Rayleigh and Loupas

noise model showed a significant increase in segmentation accuracy and robustness. By

this extension we were able to overcome the major problem of low-level segmentation

methods, i.e., structural artifacts such as shadowing e↵ects.
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Next to the region-based variational segmentation framework, we evaluated the poten-

tial of level set methods for fully-automatic segmentation of the left ventricle in images

from echocardiographic examinations. We analyzed disadvantages of the popular Chan-

Vese segmentation method in the presence of multiplicative speckle noise and proposed

a novel level set method to overcome these drawbacks. The advantage of this approach

is both its simpleness and robustness: the noise inherent in ultrasound images does not

have to be modeled explicitly but is rather estimated by means of discriminant analysis.

In particular, we determined an optimal threshold, which enabled us to separate two

signal distributions in the intensity histogram and incorporate this information in the

evolution of the level set contour. The superiority of the proposed method over the

popular Chan-Vese formulation has been demonstrated on real echocardiographic data.

We also incorporated the Legendre moment based shape prior into the latter two ap-

proaches and further increased the robustness and segmentation accuracy in the presence

of physical phenomena in medical ultrasound imaging. The proposed level set formula-

tion in combination with the shape prior yielded the best overall segmentation results

compared to manual delineations of two echocardiographic experts.

In the last part of this thesis we focused on the the challenge of motion estimation in

medical ultrasound imaging and in particular on optical flow methods. Assuming a per-

turbation of the ultrasound images with multiplicative noise, we were able to show the

inapplicability of a fundamental assumption for optical flow methods, i.e., the common

intensity constancy constraint, experimentally and mathematically.

Based on our observations, we developed a novel data constraint using local statistics.

With the help of local cumulative histograms we were able to identify corresponding

image regions and measure their similarity using standard L2 data fidelity terms. The

validity of this idea has been proven mathematically, and experimental results confirm

its ability to account for multiplicative speckle noise in medical ultrasound images.

We embedded this new constraint into a variational model similar to the popular Horn-

Schunck formulation and show the existence of a unique minimizer of the associated

optimization problem by means of the direct methods of calculus of variations. Further-

more, we observed that the proposed optical flow methods outperforms state-of-the-art

methods from the literature both on synthetic and real patient data from medical ultra-

sound imaging.

The presented results in this thesis give a strong argument for physical noise modeling

in ultrasound imaging and the adaption of computer vision methods to this imaging

modality. By incorporation of a-priori knowledge about the image formation process,

one is able to significantly increase the accuracy and robustness in medical image analysis

and thus improve the reliability of computer-assisted diagnosis in modern healthcare.
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Automatic recognition of heart remodeling processes

The computer vision methods developed in this thesis improve the results of fully-

automatic segmentation and motion estimation in medical ultrasound imaging. Even

though the respective algorithms increase the reliability of computer-assisted analysis of

medical ultrasound images in clinical environments, their application is not necessarily

limited to the respective processing tasks.

In fact, a combination of segmentation and motion estimation can lead to solutions

for inference problems on a higher abstraction level. One example is the investigation

of heart remodeling processes in the myocardium, induced by cardiovascular diseases,

e.g., acute infarction. These processes can give valuable information about the future

development of pathologies and hence help to prescribe the appropriate treatment.

In a first preliminary study we combined the information obtained from fully automatic

segmentation and motion estimation, to tackle a challenging decision problem on pre-

clinical ultrasound data from laboratory mice. The aim in this study was to conclude

from the given data, if the murine myocardium shows any major defects due to artifi-

cially induces infarctions, and in which heart regions this defect is prevalent.

For this analysis, we employed concepts from pattern recognition to develop an automatic

analysis software for this specific problem. We used the information obtained from high-

level segmentation and motion estimation as features to train a Bayes classifier based on

manual ground truth classification of heart regions from an echocardiographic expert.

(a) End-diastolic phase (b) End-systolic phase (c) Displacement vectors

Fig. 7.1. Results of high-level segmentation and motion estimation for the left

ventricle of a murine heart.
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Figure 7.1a and 7.1b shows automatic segmentation results of the left ventricle in the

murine heart during end-diastolic and end-systolic phase, respectively. The delineation

of the endocardial border is used to extract the relevant information from motion esti-

mation between the two images. Figure 7.1c illustrates the visualization of computed

displacement vectors between two images. These displacement vectors are a major fea-

ture for the automatic recognition of heart remodeling processes.

We subdivided the shape of the myocardial muscle tissue into 16 segments and used

40 datasets for training of the classifier. We combined these motion information with

additional features, e.g., intensity distribution within a heart segment. The proposed

method has been validated on 11 other datasets and we achieved a recognition rate of

91.40% correctly classified heart segments with respect to the ground truth information

from the echocardiographic expert.

Currently, we work on an extension of this heart remodeling recognition system for hu-

man patient data. Naturally, this has a far greater impact for computer-assisted analysis

of medical images and is of great interest for cardiologists.

The preliminary results presented above indicate the potential of robust computer vision

methods (especially their combination, e.g., using segmentation and motion estimation)

for medical image analysis. In particular, it shows that novel methods can help medical

personnel in daily clinical routine by producing fully-automatic results in an accurate

and reproducible way.

Finally, we state that every e�ciency increase in clinical environments gives physicians

the possibility to take better care for their patients. For this reason, we hope the content

of this thesis supports this global goal and helps to improve the current conditions in

healthcare for the benefit of every person.
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[140] S. Munder, C. Schnörr, and D. Gavrila, Pedestrian Detection and Tracking

Using a Mixture of View-Based Shape & Texture Models, IEEE Transactions on

Intelligent Transportation Systems, 9 (2008), pp. 333–343. 55

[141] J. Nascimento, J. Sanches, and J. Marques, Tracking the Left Ventricle

in Ultrasound Images Based on Total Variation Denoising, in Pattern Recogni-

tion and Image Analysis, J. Mart́ı, J. Bened́ı, A. Mendonça, and J. Serrat, eds.,

vol. 4478 of Lecture Notes in Computer Science, Springer, 2007, pp. 628–636. 43,

46, 105

[142] F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruc-

tion, Monographs on Mathematical Modeling and Computation, SIAM, 2001. 51



270 Bibliography

[143] J. Noble, Ultrasound Image Segmentation and Tissue Characterization, Journal

of Engineering in Medicine, 224, pp. 307–316. 42

[144] J. Noble and D. Boukerroui, Ultrasound Image Segmentation: A Survey,

IEEE Transactions on Medical Imaging, 25 (2006), pp. 987–1010. 62, 90
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